钒酸铋
光催化
聚乙烯吡咯烷酮
材料科学
罗丹明B
异质结
可见光谱
钨酸盐
热液循环
单斜晶系
铋
核化学
无机化学
化学工程
化学
催化作用
晶体结构
光电子学
结晶学
有机化学
高分子化学
冶金
工程类
作者
Deqiang Zhao,Wenwen Wang,Wenjuan Zong,Shimin Xiong,Qian Zhang,Fangying Ji,Xuan Xu
出处
期刊:Materials
[MDPI AG]
日期:2017-08-02
卷期号:10 (8): 891-891
被引量:35
摘要
The band gaps of bismuth vanadate (BiVO4) and bismuth sulfide (Bi2S3) are about 2.40 eV and 1.30 eV, respectively. Although both BiVO4 and Bi2S3 are capable of strong visible light absorption, electron–hole recombination occurs easily. To solve this problem, we designed a one-step hydrothermal method for synthesizing a Bismuth sulfide (Bi2S3)/Bismuth vanadate (BiVO4) heterojunction using polyvinylpyrrolidone K-30 (PVP) as a structure-directing agent, and 2-Amino-3-mercaptopropanoic acid (l-cysteine) as a sulfur source. The pH of the reaction solution was regulated to yield different products: when the pH was 7.5, only monoclinic BiVO4 was produced (sample 7.5); when the pH was 8.0 or 8.5, both Bi2S3 and BiVO4 were produced (samples 8.0 and 8.5); and when the pH was 9.0, only Bi2S3 was produced (sample 9.0). In sample 8.0, Bi2S3 and BiVO4 were closely integrated with each other, with Bi2S3 particles formed on the surface of concentric BiVO4 layers, but the two compounds grew separately in a pH solution of 8.5. Visible-light photocatalytic degradation experiments demonstrated that the degradation efficiency of the Bi2S3/BiVO4 heterojunction was highest when prepared under a pH of 8.0. The initial rhodamine B in the solution (5 mg/L) was completely degraded within three hours. Recycling experiments verified the high stability of Bi2S3/BiVO4. The synthesis method proposed in this paper is expected to enable large-scale and practical use of Bi2S3/BiVO4.
科研通智能强力驱动
Strongly Powered by AbleSci AI