Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization

电容去离子 材料科学 电极 纳米线 海水淡化 氧化还原 化学工程 扫描电子显微镜 离子 电化学 氧化物 无机化学 纳米技术 冶金 复合材料 物理化学 有机化学 化学 工程类 生物化学
作者
Bryan W. Byles,David A. Cullen,Karren L. More,Ekaterina Pomerantseva
出处
期刊:Nano Energy [Elsevier]
卷期号:44: 476-488 被引量:152
标识
DOI:10.1016/j.nanoen.2017.12.015
摘要

Hybrid capacitive deionization (HCDI), which combines a capacitive carbon electrode and a redox active electrode in a single device, has emerged as a promising method for water desalination, enabling higher ion removal capacity than devices containing two carbon electrodes. However, to date, the desalination performance of few redox active materials has been reported. For the first time, we present the electrochemical behavior of manganese oxide nanowires with four different tunnel crystal structures as faradaic electrodes in HCDI cells. Two of these phases are square tunnel structured manganese oxides, α-MnO2 and todorokite-MnO2. The other two phases have novel structures that cross-sectional scanning transmission electron microscopy analysis revealed to have ordered and disordered combinations of structural tunnels with different dimensions. The ion removal performance of the nanowires was evaluated not only in NaCl solution, which is traditionally used in laboratory experiments, but also in KCl and MgCl2 solutions, providing better understanding of the behavior of these materials for desalination of brackish water that contains multiple cation species. High ion removal capacities (as large as 27.8 mg g−1, 44.4 mg g−1, and 43.1 mg g−1 in NaCl, KCl, and MgCl2 solutions, respectively) and high ion removal rates (as large as 0.112 mg g−1 s−1, 0.165 mg g−1 s−1, and 0.164 mg g−1 s−1 in NaCl, KCl, and MgCl2 solutions, respectively) were achieved. By comparing ion removal capacity to structural tunnel size, it was found that smaller tunnels do not favor the removal of cations with larger hydrated radii, and more efficient removal of larger hydrated cations can be achieved by utilizing manganese oxides with larger structural tunnels. Extended HCDI cycling and ex situ X-ray diffraction analysis revealed the excellent stability of the manganese oxide electrodes in repeated ion removal/ion release cycles, and compositional analysis of the electrodes indicated that ion removal is achieved through both surface redox reactions and intercalation of ions into the structural tunnels. This work contributes to the understanding of the behavior of faradaic materials in electrochemical water desalination and elucidates the relationship between the electrode material crystal structure and the ion removal capacity/ion removal rate in various salt solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃不饱星球球长完成签到,获得积分0
刚刚
失眠傲白完成签到,获得积分10
1秒前
明天好完成签到,获得积分10
1秒前
Q7发布了新的文献求助10
1秒前
山见山发布了新的文献求助10
2秒前
Xue发布了新的文献求助10
2秒前
3秒前
3秒前
欧阳世宏发布了新的文献求助10
3秒前
4秒前
bkagyin应助灿灿采纳,获得10
4秒前
skyrmion发布了新的文献求助10
5秒前
联合工程完成签到,获得积分10
5秒前
优秀冬天完成签到 ,获得积分10
5秒前
trial完成签到 ,获得积分10
5秒前
寻道图强应助失眠傲白采纳,获得30
6秒前
爆米花应助nn采纳,获得10
6秒前
谢慧蕴完成签到,获得积分10
6秒前
gs完成签到,获得积分10
7秒前
不配.应助科研通管家采纳,获得20
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
含蓄的饼干完成签到 ,获得积分20
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得20
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
7秒前
细心夏槐完成签到 ,获得积分10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
球球啦发布了新的文献求助10
7秒前
7秒前
Owen应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
najibveto应助夏荧荧采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
小墨应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151290
求助须知:如何正确求助?哪些是违规求助? 2802726
关于积分的说明 7850119
捐赠科研通 2460164
什么是DOI,文献DOI怎么找? 1309586
科研通“疑难数据库(出版商)”最低求助积分说明 628975
版权声明 601760