质量分数
液体石蜡
均质化(气候)
聚乙二醇
聚乙烯醇
乳状液
材料科学
化学工程
玻璃化转变
热稳定性
过冷
PEG比率
化学
复合材料
聚合物
热力学
工程类
经济
生物多样性
财务
物理
生物
生态学
作者
Fangxian Wang,Xiaoming Fang,Zhengguo Zhang
标识
DOI:10.1016/j.solmat.2017.10.025
摘要
A mixed polymeric emulsifier consisting of polyvinyl alcohol (PVA) and polyethylene glycol-600 (PEG-600) was explored for preparing high-performance phase change material emulsions (PCMEs) containing the paraffin with a melting point of 62–64 °C. After the effects of the mass ratio of PVA to PEG-600, the mass ratio of the mixed emulsifier to the paraffin and the homogenization rate on the size distribution, viscosity and dispersion stability of the PCMEs containing 20 wt% paraffin were systematically investigated, the optimal emulsifying process parameters have been determined to be the mass ratio of PVA to PEG-600 of 50:50, the mass ratio of the mixed emulsifier to paraffin of 1:5 and the homogenization rate of 10,000 rpm. Accordingly, the PCMEs with the paraffin mass fractions varying from 10 wt% to 30 wt% were prepared. It is found that the paraffin has been well dispersed in water in the form of sphere-like droplets with average diameters ranging from 3 µm to 11 µm in the obtained PCMEs. Significantly, the PCMEs with different mass fractions of the paraffin exhibit no supercooling, owing to the function of the mixed polymeric emulsifier as a nucleating agent. The apparent specific heat of PCMEs are 1.51–2.18 times as high as that of water at the phase transition temperature region, due to the existent of the paraffin in them. Their apparent thermal conductivity gradually decreases with an increase in the mass fraction of the paraffin, while the viscosity increases significantly with mass fraction of the paraffin at the same temperatures. Furthermore, the pumping power consumption of the PCMEs shows a drastic reduction as compared to that of water at the same heat storage capacity. It is revealed that the PCMEs show great potential for use as a novel heat transfer fluid (HTF) in thermal energy storage (TES) systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI