硫黄
材料科学
成核
纳米技术
表面能
多硫化物
化学工程
化学
电极
复合材料
有机化学
工程类
物理化学
冶金
电解质
作者
Huilin Pan,Junzheng Chen,Ruiguo Cao,Vijay Murugesan,Nav Nidhi Rajput,Kee Sung Han,Kristin A. Persson,Luis Estevez,Mark Engelhard,Ji‐Guang Zhang,Karl T. Mueller,Yi Cui,Yuyan Shao,Jun Liu
出处
期刊:Nature Energy
[Springer Nature]
日期:2017-09-21
卷期号:2 (10): 813-820
被引量:342
标识
DOI:10.1038/s41560-017-0005-z
摘要
High-surface-area, nanostructured carbon is widely used for encapsulating sulfur and improving the cyclic stability of Li–S batteries, but the high carbon content and low packing density limit the specific energy that can be achieved. Here we report an approach that does not rely on sulfur encapsulation. We used a low-surface-area, open carbon fibre architecture to control the nucleation and growth of the sulfur species by manipulating the carbon surface chemistry and the solvent properties, such as donor number and Li+ diffusivity. Our approach facilitates the formation of large open spheres and prevents the production of an undesired insulating sulfur-containing film on the carbon surface. This mechanism leads to ~100% sulfur utilization, almost no capacity fading, over 99% coulombic efficiency and high energy density (1,835 Wh kg−1 and 2,317 Wh l−1). This finding offers an alternative approach for designing high-energy and low-cost Li–S batteries through controlling sulfur reaction on low-surface-area carbon. Sulfur encapsulation with nanoporous carbon is a widely adopted approach for Li–S batteries, but this often results in low sulfur utilization and low volumetric energy density. Here the authors report a non-encapsulation approach for the growth of S-containing species with low-surface-area carbon and high energy.
科研通智能强力驱动
Strongly Powered by AbleSci AI