Social Media Data Analytics for the U.S. Construction Industry: Preliminary Study on Twitter

时间轴 社会化媒体 大数据 社交媒体分析 情绪分析 数据科学 地理定位 计算机科学 分析 报纸 数据分析 万维网 广告 业务 数据挖掘 机器学习 考古 历史
作者
Liyaning Tang,Yiming Zhang,Fei Dai,Yoojung Yoon,Yangqiu Song,Radhey Shyam Sharma
出处
期刊:Journal of Management in Engineering [American Society of Civil Engineers]
卷期号:33 (6) 被引量:49
标识
DOI:10.1061/(asce)me.1943-5479.0000554
摘要

The increasing use of the Internet for many purposes is creating big data, many of which are generated from social media. These big data potentially could assist in obtaining valuable administrative information and even explore new social phenomena. Traditional ways of collecting data, such as questionnaire surveys, are time-consuming and costly. Therefore, the use of social media affords the opportunity to extract information that might be of benefit to the construction industry in a responsive and inexpensive manner. To this end, this paper explores whether information and knowledge that would be valuable in the construction domain can be generated by analyzing social media data. Twitter was selected for an initial trial analysis because of its wide usage in the United States. Because they represent a majority of the construction users in Twitter, the following four user clusters were selected and analyzed: construction workers, construction companies, construction unions, and construction media. For each user identified in the four clusters, the 3,200 most recent Twitter messages were collected, which were analyzed from the following aspects: sentiment analysis, topic modeling, link analysis, geolocation analysis, and timeline analysis. Different data-analysis methods were used for the specific themes, such as Stanford Natural Language Processing (StanfordNLP) for sentiment analysis. The detailed findings, benefits, and barriers to incorporating social media data analytics in the construction industry, as well as future research directions, are discussed in this paper. For example, the sentiment analysis results indicated that construction workers tend to have a higher proportion of negative messages compared to the other clusters, which may prompt more attention to emotional guidance and understanding by construction companies and the public. This paper benefits academia by testing an alternative way of studying the construction population, which could help decision makers gain a better understanding of real-world situations in the construction industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福的蓝血完成签到,获得积分10
1秒前
LFB完成签到,获得积分10
1秒前
xinghe123完成签到,获得积分10
1秒前
mm应助帅气善斓采纳,获得10
2秒前
香蕉觅云应助甜甜圈采纳,获得10
2秒前
帅帅哈完成签到,获得积分10
3秒前
小蘑菇应助关畅澎采纳,获得10
3秒前
3秒前
3秒前
火星上的绿蕊完成签到,获得积分10
3秒前
噜噜噜完成签到 ,获得积分10
4秒前
4秒前
amy完成签到,获得积分10
4秒前
纵马长歌完成签到,获得积分10
4秒前
852应助无限安荷采纳,获得10
4秒前
科研辣椒完成签到,获得积分10
5秒前
董春伟完成签到,获得积分10
6秒前
frank完成签到,获得积分10
6秒前
phj完成签到,获得积分10
7秒前
MAVS完成签到,获得积分10
7秒前
7秒前
爪爪完成签到,获得积分10
7秒前
一词压两宋完成签到,获得积分10
8秒前
聪明新筠完成签到,获得积分10
8秒前
Cloris完成签到,获得积分10
8秒前
2hi完成签到,获得积分10
8秒前
佳佳发布了新的文献求助10
9秒前
Verritis完成签到,获得积分10
9秒前
十月天秤完成签到,获得积分10
9秒前
Apricity完成签到,获得积分10
9秒前
从容的胡萝卜完成签到,获得积分10
9秒前
9秒前
路哈哈发布了新的文献求助10
10秒前
DrWang完成签到,获得积分10
11秒前
11秒前
溆玉碎兰笑完成签到 ,获得积分10
11秒前
Denning完成签到,获得积分10
11秒前
搜集达人应助邵振启采纳,获得10
11秒前
爱听歌依波完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651684
求助须知:如何正确求助?哪些是违规求助? 4785671
关于积分的说明 15055211
捐赠科研通 4810389
什么是DOI,文献DOI怎么找? 2573087
邀请新用户注册赠送积分活动 1529005
关于科研通互助平台的介绍 1487961