亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Social Media Data Analytics for the U.S. Construction Industry: Preliminary Study on Twitter

时间轴 社会化媒体 大数据 社交媒体分析 情绪分析 数据科学 地理定位 计算机科学 分析 报纸 数据分析 万维网 广告 业务 数据挖掘 机器学习 考古 历史
作者
Liyaning Tang,Yiming Zhang,Fei Dai,Yoojung Yoon,Yangqiu Song,Radhey Shyam Sharma
出处
期刊:Journal of Management in Engineering [American Society of Civil Engineers]
卷期号:33 (6) 被引量:49
标识
DOI:10.1061/(asce)me.1943-5479.0000554
摘要

The increasing use of the Internet for many purposes is creating big data, many of which are generated from social media. These big data potentially could assist in obtaining valuable administrative information and even explore new social phenomena. Traditional ways of collecting data, such as questionnaire surveys, are time-consuming and costly. Therefore, the use of social media affords the opportunity to extract information that might be of benefit to the construction industry in a responsive and inexpensive manner. To this end, this paper explores whether information and knowledge that would be valuable in the construction domain can be generated by analyzing social media data. Twitter was selected for an initial trial analysis because of its wide usage in the United States. Because they represent a majority of the construction users in Twitter, the following four user clusters were selected and analyzed: construction workers, construction companies, construction unions, and construction media. For each user identified in the four clusters, the 3,200 most recent Twitter messages were collected, which were analyzed from the following aspects: sentiment analysis, topic modeling, link analysis, geolocation analysis, and timeline analysis. Different data-analysis methods were used for the specific themes, such as Stanford Natural Language Processing (StanfordNLP) for sentiment analysis. The detailed findings, benefits, and barriers to incorporating social media data analytics in the construction industry, as well as future research directions, are discussed in this paper. For example, the sentiment analysis results indicated that construction workers tend to have a higher proportion of negative messages compared to the other clusters, which may prompt more attention to emotional guidance and understanding by construction companies and the public. This paper benefits academia by testing an alternative way of studying the construction population, which could help decision makers gain a better understanding of real-world situations in the construction industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Aliothae发布了新的文献求助10
刚刚
3秒前
Milktea123完成签到,获得积分10
8秒前
Aliothae完成签到,获得积分10
9秒前
11秒前
15秒前
贪玩的半仙发布了新的文献求助100
16秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
科研通AI6应助琳666采纳,获得10
24秒前
量子星尘发布了新的文献求助30
33秒前
34秒前
秋作完成签到,获得积分10
38秒前
ceeray23发布了新的文献求助20
38秒前
fanglz完成签到 ,获得积分10
39秒前
52秒前
54秒前
54秒前
贪玩的半仙发布了新的文献求助100
57秒前
琳666发布了新的文献求助10
1分钟前
zzy完成签到 ,获得积分10
1分钟前
科研通AI2S应助琳666采纳,获得10
1分钟前
贪玩的半仙完成签到,获得积分10
1分钟前
晨曦呢完成签到 ,获得积分10
1分钟前
好久不见完成签到,获得积分10
1分钟前
Weiyu完成签到 ,获得积分10
1分钟前
CC完成签到 ,获得积分10
1分钟前
1分钟前
态度完成签到,获得积分10
2分钟前
归雁发布了新的文献求助10
2分钟前
归雁完成签到,获得积分10
2分钟前
Aphcity应助科研通管家采纳,获得40
2分钟前
李健的小迷弟应助归雁采纳,获得10
2分钟前
,。应助科研通管家采纳,获得30
2分钟前
布蓝图完成签到 ,获得积分10
2分钟前
楠楠2001完成签到 ,获得积分10
2分钟前
Gryff完成签到 ,获得积分10
2分钟前
赘婿应助ceeray23采纳,获得20
2分钟前
广阔天地完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5042503
求助须知:如何正确求助?哪些是违规求助? 4273011
关于积分的说明 13321887
捐赠科研通 4085810
什么是DOI,文献DOI怎么找? 2235364
邀请新用户注册赠送积分活动 1242917
关于科研通互助平台的介绍 1169941