Social Media Data Analytics for the U.S. Construction Industry: Preliminary Study on Twitter

时间轴 社会化媒体 大数据 社交媒体分析 情绪分析 数据科学 地理定位 计算机科学 分析 报纸 数据分析 万维网 广告 业务 数据挖掘 机器学习 考古 历史
作者
Liyaning Tang,Yiming Zhang,Fei Dai,Yoojung Yoon,Yangqiu Song,Radhey Shyam Sharma
出处
期刊:Journal of Management in Engineering [American Society of Civil Engineers]
卷期号:33 (6) 被引量:49
标识
DOI:10.1061/(asce)me.1943-5479.0000554
摘要

The increasing use of the Internet for many purposes is creating big data, many of which are generated from social media. These big data potentially could assist in obtaining valuable administrative information and even explore new social phenomena. Traditional ways of collecting data, such as questionnaire surveys, are time-consuming and costly. Therefore, the use of social media affords the opportunity to extract information that might be of benefit to the construction industry in a responsive and inexpensive manner. To this end, this paper explores whether information and knowledge that would be valuable in the construction domain can be generated by analyzing social media data. Twitter was selected for an initial trial analysis because of its wide usage in the United States. Because they represent a majority of the construction users in Twitter, the following four user clusters were selected and analyzed: construction workers, construction companies, construction unions, and construction media. For each user identified in the four clusters, the 3,200 most recent Twitter messages were collected, which were analyzed from the following aspects: sentiment analysis, topic modeling, link analysis, geolocation analysis, and timeline analysis. Different data-analysis methods were used for the specific themes, such as Stanford Natural Language Processing (StanfordNLP) for sentiment analysis. The detailed findings, benefits, and barriers to incorporating social media data analytics in the construction industry, as well as future research directions, are discussed in this paper. For example, the sentiment analysis results indicated that construction workers tend to have a higher proportion of negative messages compared to the other clusters, which may prompt more attention to emotional guidance and understanding by construction companies and the public. This paper benefits academia by testing an alternative way of studying the construction population, which could help decision makers gain a better understanding of real-world situations in the construction industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wz完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
谨慎初曼完成签到,获得积分10
1秒前
爱爱精神境界完成签到,获得积分10
1秒前
Prime发布了新的文献求助200
2秒前
机灵花生完成签到,获得积分10
3秒前
大模型应助包包采纳,获得20
3秒前
大模型应助hute采纳,获得10
3秒前
3秒前
优美发布了新的文献求助10
5秒前
livinglast完成签到,获得积分10
6秒前
CodeCraft应助ff采纳,获得10
6秒前
Owen应助郝岩采纳,获得10
6秒前
7秒前
hezi完成签到,获得积分10
8秒前
爱笑灵雁完成签到,获得积分10
10秒前
10秒前
动听梨愁完成签到,获得积分10
10秒前
29完成签到,获得积分10
11秒前
夏惋清完成签到 ,获得积分0
11秒前
6a完成签到 ,获得积分10
12秒前
dylan发布了新的文献求助10
12秒前
12秒前
中央戏精学院完成签到,获得积分10
13秒前
香蕉觅云应助lucas采纳,获得10
13秒前
巴拉巴拉完成签到,获得积分10
13秒前
13秒前
wuming完成签到,获得积分10
13秒前
fu发布了新的文献求助10
14秒前
Alven应助窥荷采纳,获得10
14秒前
ff发布了新的文献求助10
15秒前
16秒前
lee完成签到,获得积分10
16秒前
5r发布了新的文献求助20
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
蜂鸟5156完成签到,获得积分10
18秒前
18秒前
小唐完成签到 ,获得积分10
18秒前
huzj发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530883
求助须知:如何正确求助?哪些是违规求助? 4619878
关于积分的说明 14570572
捐赠科研通 4559413
什么是DOI,文献DOI怎么找? 2498391
邀请新用户注册赠送积分活动 1478340
关于科研通互助平台的介绍 1449913