Social Media Data Analytics for the U.S. Construction Industry: Preliminary Study on Twitter

时间轴 社会化媒体 大数据 社交媒体分析 情绪分析 数据科学 地理定位 计算机科学 分析 报纸 数据分析 万维网 广告 业务 数据挖掘 机器学习 历史 考古
作者
Liyaning Tang,Yiming Zhang,Fei Dai,Yoojung Yoon,Yangqiu Song,Radhey Shyam Sharma
出处
期刊:Journal of Management in Engineering [American Society of Civil Engineers]
卷期号:33 (6) 被引量:49
标识
DOI:10.1061/(asce)me.1943-5479.0000554
摘要

The increasing use of the Internet for many purposes is creating big data, many of which are generated from social media. These big data potentially could assist in obtaining valuable administrative information and even explore new social phenomena. Traditional ways of collecting data, such as questionnaire surveys, are time-consuming and costly. Therefore, the use of social media affords the opportunity to extract information that might be of benefit to the construction industry in a responsive and inexpensive manner. To this end, this paper explores whether information and knowledge that would be valuable in the construction domain can be generated by analyzing social media data. Twitter was selected for an initial trial analysis because of its wide usage in the United States. Because they represent a majority of the construction users in Twitter, the following four user clusters were selected and analyzed: construction workers, construction companies, construction unions, and construction media. For each user identified in the four clusters, the 3,200 most recent Twitter messages were collected, which were analyzed from the following aspects: sentiment analysis, topic modeling, link analysis, geolocation analysis, and timeline analysis. Different data-analysis methods were used for the specific themes, such as Stanford Natural Language Processing (StanfordNLP) for sentiment analysis. The detailed findings, benefits, and barriers to incorporating social media data analytics in the construction industry, as well as future research directions, are discussed in this paper. For example, the sentiment analysis results indicated that construction workers tend to have a higher proportion of negative messages compared to the other clusters, which may prompt more attention to emotional guidance and understanding by construction companies and the public. This paper benefits academia by testing an alternative way of studying the construction population, which could help decision makers gain a better understanding of real-world situations in the construction industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
刚刚
dengqin发布了新的文献求助10
刚刚
我是老大应助猪猪hero采纳,获得10
刚刚
鲸落完成签到,获得积分10
1秒前
小李同学完成签到,获得积分10
1秒前
小羊123发布了新的文献求助10
1秒前
1秒前
卷卷完成签到,获得积分10
2秒前
z123完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
彭于晏应助一两风采纳,获得10
5秒前
LyAnZ发布了新的文献求助10
5秒前
5秒前
5秒前
ddl完成签到,获得积分10
6秒前
6秒前
桐桐应助小羊123采纳,获得10
6秒前
刘少山发布了新的文献求助10
7秒前
aylwtt完成签到,获得积分10
7秒前
7秒前
Youatpome发布了新的文献求助10
8秒前
SHAO应助内向的浩宇采纳,获得10
8秒前
schun发布了新的文献求助10
8秒前
9秒前
9秒前
suki发布了新的文献求助30
9秒前
10秒前
Abdory发布了新的文献求助10
10秒前
10秒前
皮崇知发布了新的文献求助10
10秒前
zygclwl发布了新的文献求助10
10秒前
abai发布了新的文献求助10
11秒前
穆知完成签到,获得积分10
11秒前
ding应助十四采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958492
求助须知:如何正确求助?哪些是违规求助? 3504758
关于积分的说明 11120028
捐赠科研通 3236093
什么是DOI,文献DOI怎么找? 1788616
邀请新用户注册赠送积分活动 871249
科研通“疑难数据库(出版商)”最低求助积分说明 802625