Social Media Data Analytics for the U.S. Construction Industry: Preliminary Study on Twitter

时间轴 社会化媒体 大数据 社交媒体分析 情绪分析 数据科学 地理定位 计算机科学 分析 报纸 数据分析 万维网 广告 业务 数据挖掘 机器学习 历史 考古
作者
Liyaning Tang,Yiming Zhang,Fei Dai,Yoojung Yoon,Yangqiu Song,Radhey Shyam Sharma
出处
期刊:Journal of Management in Engineering [American Society of Civil Engineers]
卷期号:33 (6) 被引量:49
标识
DOI:10.1061/(asce)me.1943-5479.0000554
摘要

The increasing use of the Internet for many purposes is creating big data, many of which are generated from social media. These big data potentially could assist in obtaining valuable administrative information and even explore new social phenomena. Traditional ways of collecting data, such as questionnaire surveys, are time-consuming and costly. Therefore, the use of social media affords the opportunity to extract information that might be of benefit to the construction industry in a responsive and inexpensive manner. To this end, this paper explores whether information and knowledge that would be valuable in the construction domain can be generated by analyzing social media data. Twitter was selected for an initial trial analysis because of its wide usage in the United States. Because they represent a majority of the construction users in Twitter, the following four user clusters were selected and analyzed: construction workers, construction companies, construction unions, and construction media. For each user identified in the four clusters, the 3,200 most recent Twitter messages were collected, which were analyzed from the following aspects: sentiment analysis, topic modeling, link analysis, geolocation analysis, and timeline analysis. Different data-analysis methods were used for the specific themes, such as Stanford Natural Language Processing (StanfordNLP) for sentiment analysis. The detailed findings, benefits, and barriers to incorporating social media data analytics in the construction industry, as well as future research directions, are discussed in this paper. For example, the sentiment analysis results indicated that construction workers tend to have a higher proportion of negative messages compared to the other clusters, which may prompt more attention to emotional guidance and understanding by construction companies and the public. This paper benefits academia by testing an alternative way of studying the construction population, which could help decision makers gain a better understanding of real-world situations in the construction industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明无施完成签到 ,获得积分10
1秒前
zyz完成签到,获得积分10
1秒前
1秒前
1秒前
vv完成签到,获得积分10
1秒前
Jeffreyluo完成签到,获得积分10
2秒前
好好读书应助核桃采纳,获得50
2秒前
3秒前
老迟到的盼海完成签到,获得积分10
3秒前
3秒前
星痕发布了新的文献求助10
4秒前
4秒前
Www发布了新的文献求助10
5秒前
王jj发布了新的文献求助10
6秒前
7秒前
科研通AI6应助大咸鱼采纳,获得10
7秒前
wanci应助Sam采纳,获得10
8秒前
bkagyin应助Luhh采纳,获得10
8秒前
超级白昼发布了新的文献求助30
9秒前
研友_Ljb0qL发布了新的文献求助10
10秒前
长情的天寿完成签到,获得积分10
10秒前
vv发布了新的文献求助10
11秒前
11秒前
12秒前
Mrshi完成签到,获得积分10
12秒前
67完成签到,获得积分10
12秒前
momowang发布了新的文献求助10
12秒前
义气的水蓝完成签到,获得积分10
12秒前
爆米花应助lilili采纳,获得10
12秒前
CodeCraft应助司忆采纳,获得10
14秒前
aaa发布了新的文献求助10
14秒前
健康的羽毛关注了科研通微信公众号
14秒前
Jasper应助义气机器猫采纳,获得10
14秒前
俏皮行云完成签到 ,获得积分10
14秒前
Johnlei发布了新的文献求助30
15秒前
15秒前
16秒前
17秒前
张世旗完成签到 ,获得积分10
17秒前
天天发布了新的文献求助10
18秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583981
求助须知:如何正确求助?哪些是违规求助? 4667534
关于积分的说明 14768286
捐赠科研通 4609869
什么是DOI,文献DOI怎么找? 2529501
邀请新用户注册赠送积分活动 1498583
关于科研通互助平台的介绍 1467223