清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Social Media Data Analytics for the U.S. Construction Industry: Preliminary Study on Twitter

时间轴 社会化媒体 大数据 社交媒体分析 情绪分析 数据科学 地理定位 计算机科学 分析 报纸 数据分析 万维网 广告 业务 数据挖掘 机器学习 考古 历史
作者
Liyaning Tang,Yiming Zhang,Fei Dai,Yoojung Yoon,Yangqiu Song,Radhey Shyam Sharma
出处
期刊:Journal of Management in Engineering [American Society of Civil Engineers]
卷期号:33 (6) 被引量:49
标识
DOI:10.1061/(asce)me.1943-5479.0000554
摘要

The increasing use of the Internet for many purposes is creating big data, many of which are generated from social media. These big data potentially could assist in obtaining valuable administrative information and even explore new social phenomena. Traditional ways of collecting data, such as questionnaire surveys, are time-consuming and costly. Therefore, the use of social media affords the opportunity to extract information that might be of benefit to the construction industry in a responsive and inexpensive manner. To this end, this paper explores whether information and knowledge that would be valuable in the construction domain can be generated by analyzing social media data. Twitter was selected for an initial trial analysis because of its wide usage in the United States. Because they represent a majority of the construction users in Twitter, the following four user clusters were selected and analyzed: construction workers, construction companies, construction unions, and construction media. For each user identified in the four clusters, the 3,200 most recent Twitter messages were collected, which were analyzed from the following aspects: sentiment analysis, topic modeling, link analysis, geolocation analysis, and timeline analysis. Different data-analysis methods were used for the specific themes, such as Stanford Natural Language Processing (StanfordNLP) for sentiment analysis. The detailed findings, benefits, and barriers to incorporating social media data analytics in the construction industry, as well as future research directions, are discussed in this paper. For example, the sentiment analysis results indicated that construction workers tend to have a higher proportion of negative messages compared to the other clusters, which may prompt more attention to emotional guidance and understanding by construction companies and the public. This paper benefits academia by testing an alternative way of studying the construction population, which could help decision makers gain a better understanding of real-world situations in the construction industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经不言完成签到 ,获得积分10
6秒前
xiaogang127完成签到 ,获得积分10
32秒前
54秒前
xun发布了新的文献求助10
1分钟前
包子牛奶完成签到,获得积分10
1分钟前
digger2023完成签到 ,获得积分10
1分钟前
脑洞疼应助Royal采纳,获得10
1分钟前
John发布了新的文献求助10
2分钟前
昭荃完成签到 ,获得积分10
2分钟前
深情安青应助喜洋洋采纳,获得10
2分钟前
3分钟前
迷人的沛山完成签到 ,获得积分10
3分钟前
开心每一天完成签到 ,获得积分10
3分钟前
喜洋洋发布了新的文献求助10
4分钟前
tao完成签到 ,获得积分10
4分钟前
imi完成签到 ,获得积分10
4分钟前
Royal完成签到,获得积分10
4分钟前
井小浩完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
牛安荷完成签到,获得积分10
5分钟前
Royal发布了新的文献求助10
5分钟前
彩色的芷容完成签到 ,获得积分20
5分钟前
GG完成签到 ,获得积分10
5分钟前
5分钟前
J陆lululu完成签到 ,获得积分10
6分钟前
Yolenders完成签到 ,获得积分10
6分钟前
naczx完成签到,获得积分10
6分钟前
6分钟前
7分钟前
仿真小学生完成签到,获得积分10
7分钟前
racill完成签到 ,获得积分10
7分钟前
土拨鼠完成签到 ,获得积分10
7分钟前
玩命的无春完成签到 ,获得积分10
7分钟前
brick2024完成签到,获得积分10
7分钟前
苏州九龙小7完成签到 ,获得积分10
7分钟前
8分钟前
Migue发布了新的文献求助10
8分钟前
ala完成签到,获得积分10
8分钟前
1461644768完成签到,获得积分10
8分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137034
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784284
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999