阳极
材料科学
电解质
锂(药物)
成核
电化学窗口
磷酸钒锂电池
化学工程
硫化物
电池(电)
离子电导率
电镀(地质)
电极
枝晶(数学)
电化学
冶金
热力学
化学
有机化学
物理化学
地质学
功率(物理)
内分泌学
工程类
几何学
物理
医学
数学
地球物理学
作者
Jian Peng,Dengxu Wu,Fengmei Song,Shuo Wang,Quanhai Niu,Jieru Xu,Pushun Lu,Hong Li,Liquan Chen,Fan Wu
标识
DOI:10.1002/adfm.202105776
摘要
Abstract Lithium metal is the ideal anode candidate but suffers from great challenges including poor thermodynamic stability in liquid organic electrolytes and dendrite nucleation/growth during the continuous plating/stripping process. To solve the difficulties listed above, here, a battery configuration combining a liquid lithium solution anode, a sulfide solid electrolyte, and an interfacial protection layer is proposed to prevent interfacial reaction between the two components. This configuration combines the advantages of liquid‐lithium‐solution anode (dissolve lithium to essentially prevent lithium nucleation) and sulfide solid electrolyte (highest room‐temperature ionic conductivity among all solid electrolytes and ideal mechanical ductility for fully compact layer simply by cold pressing), so that a record‐high current density (17.78 mA cm −2 ) and long cycle life (nearly 3000 h) are realized. At the same time, the solubility of lithium metal in the liquid Li anode and electrochemical properties of liquid Li anode are systematically studied to find the most suitable liquid Li anode concentration with the highest room‐temperature conductivity (12.2 mS cm −1 ). This work provides a promising approach and battery configuration for achieving high‐specific‐capacity, high‐energy/power‐density and long‐cycle‐life secondary batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI