An improved influence maximization method for social networks based on genetic algorithm

计算机科学 可扩展性 最大化 动态网络分析 社交网络(社会语言学) 快照(计算机存储) 时间戳 不断发展的网络 集合(抽象数据类型) 算法 复杂网络 理论计算机科学 数据挖掘 数学优化 数学 社会化媒体 数据库 操作系统 万维网 程序设计语言 计算机网络
作者
Jalil Jabari Lotf,Mohammad Abdollahi Azgomi,Mohammad Reza Ebrahimi Dishabi
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:586: 126480-126480 被引量:82
标识
DOI:10.1016/j.physa.2021.126480
摘要

Over the recent decade, much research has been conducted in the field of social networks. The structure of these networks has been irregular, complex, and dynamic, and certain challenges such as network topology, scalability, and high computational complexities are typically evident. Because of the changes in the structure of social networks over time and the widespread diffusion of ideas, seed sets also need to change over time. Since there have been limited studies on highly dynamical changes in real networks, this research intended to address the network dynamicity in the classical influence maximization problem, which discovers a small subset of nodes in a social network and maximizes the influence spread. To this end, we used soft computing methods (i.e., a dynamic generalized genetic algorithm) in social networks under independent cascade models to obtain a dynamic seed set. We modeled several graphs in a specified timestamp through which the edges and the nodes changed within different time intervals. Attempts were made to find influential individuals in each of these graphs and maximize individuals’ influences in social networks, which could thereby lead to changes in the members of the seed set. The proposed method was evaluated using standard datasets. The results showed that due to the reduction of the search areas and competition, the proposed method has higher scalability and accuracy to identify influential nodes in these snapshot graphs as compared with other comparable algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
tjz完成签到,获得积分10
刚刚
楚文强发布了新的文献求助10
刚刚
00279完成签到,获得积分10
2秒前
lyh发布了新的文献求助20
2秒前
自由冬亦完成签到,获得积分10
3秒前
3秒前
4秒前
巫马炎彬完成签到,获得积分0
4秒前
赘婿应助淡然的铭采纳,获得10
4秒前
赵纤发布了新的文献求助30
5秒前
5秒前
King16完成签到,获得积分10
5秒前
楚文强完成签到,获得积分10
5秒前
乖拉完成签到,获得积分10
6秒前
zzw完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
鲸鱼完成签到,获得积分10
7秒前
小趴菜完成签到,获得积分10
7秒前
Owen应助彭a采纳,获得10
7秒前
8秒前
8秒前
会飞的鱼完成签到,获得积分10
9秒前
Jasper应助现实的行云采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
LPH应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
10秒前
Alec应助科研通管家采纳,获得20
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
哈哈哈应助科研通管家采纳,获得10
10秒前
Andy_Cheung应助科研通管家采纳,获得10
10秒前
BabiboSu应助科研通管家采纳,获得10
10秒前
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736925
求助须知:如何正确求助?哪些是违规求助? 3280839
关于积分的说明 10021396
捐赠科研通 2997494
什么是DOI,文献DOI怎么找? 1644637
邀请新用户注册赠送积分活动 782085
科研通“疑难数据库(出版商)”最低求助积分说明 749707