数学
坐标下降
最小二乘函数近似
规范(哲学)
趋同(经济学)
块(置换群论)
组合数学
基质(化学分析)
凸性
凸函数
秩(图论)
算法
凸优化
正多边形
应用数学
数学优化
估计员
几何学
统计
政治学
法学
材料科学
经济
复合材料
金融经济学
经济增长
作者
Kun Du,Chun Ruan,Xinguo Sun
标识
DOI:10.1016/j.aml.2021.107689
摘要
Randomized block coordinate descent type methods have been demonstrated to be efficient for solving large-scale optimization problems. Linear convergence to the unique solution is established if the objective function is strongly convex. In this paper we propose a randomized block coordinate descent algorithm for solving the matrix least squares problem minX∈Rm×n‖C − AXB‖F with A∈Rp×m, B∈Rn×q, and C∈Rp×q. We prove that the proposed algorithm converges linearly to the unique minimum norm least squares solution (i.e., A†CB†) without the strong convexity assumption. Instead, we only need that B has full row rank. Numerical experiments are given to illustrate the theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI