The capacity prediction of Li-ion batteries based on a new feature extraction technique and an improved extreme learning machine algorithm

奇异值分解 极限学习机 计算机科学 算法 相关系数 特征(语言学) 特征提取 人工智能 电池(电) 可靠性(半导体) 模式识别(心理学) 机器学习 功率(物理) 人工神经网络 语言学 量子力学 物理 哲学
作者
Ting Tang,Huimei Yuan
出处
期刊:Journal of Power Sources [Elsevier BV]
卷期号:514: 230572-230572 被引量:51
标识
DOI:10.1016/j.jpowsour.2021.230572
摘要

Accurate prediction of the remaining useful life of lithium-ion (Li-ion) batteries is particularly important for their prognosis and health management. Therefore, a new feature extraction technique for extracting health indicators (HIs) characterizing the battery aging and a new improved extreme learning machine (ELM) algorithm for model training and prediction are proposed in this paper. Firstly, based on the measurable parameters, singular value decomposition (SVD) is used to extract the respective singular value as HIs, and then the Pearson correlation coefficient between each HI and capacity are calculated. Next, several HIs with high correlation coefficients are selected as the input of the model. Finally, the relationship model between HIs and capacity is constructed by using the improved ELM (OS-PELM) algorithm, and the final prediction results are obtained. Li-ion battery data from three different research institutions are adopted to verify the feasibility and reliability of the proposed method. Experiment results show that feature extraction technique and improved algorithm can not only extract features highly related to capacity, but also ensure the accuracy of prediction. The comparison with other algorithms further shows that the novel method is more accurate and competitive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王子祥发布了新的文献求助10
刚刚
ltt发布了新的文献求助10
1秒前
哇卡卡发布了新的文献求助10
1秒前
Asystasia7发布了新的文献求助10
1秒前
失眠双双发布了新的文献求助10
1秒前
彩色冥幽发布了新的文献求助10
1秒前
2秒前
2秒前
meiqiu发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
欢呼芒果完成签到,获得积分10
3秒前
3秒前
熊涛发布了新的文献求助10
4秒前
Akim应助淀粉采纳,获得10
4秒前
5秒前
aka2012完成签到,获得积分10
5秒前
Jack123发布了新的文献求助10
5秒前
凌问晴完成签到,获得积分20
6秒前
6秒前
ltt完成签到,获得积分20
6秒前
6秒前
yuqinghui98发布了新的文献求助10
7秒前
7秒前
laryc发布了新的文献求助10
7秒前
7秒前
开朗网络发布了新的文献求助10
7秒前
米糊发布了新的文献求助10
8秒前
echo发布了新的文献求助10
8秒前
陶陶完成签到,获得积分10
8秒前
beigu发布了新的文献求助10
8秒前
alala应助葡萄酒采纳,获得10
8秒前
赘婿应助ff采纳,获得10
9秒前
彩色冥幽完成签到,获得积分10
10秒前
朴实的丝关注了科研通微信公众号
10秒前
10秒前
10秒前
10秒前
你帅你有理完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180