解吸
土壤水分
吸附
弗伦德利希方程
化学
环境化学
阳离子交换容量
非生物成分
有机质
土壤科学
环境科学
生态学
生物
有机化学
作者
Bailin Liu,Yan-Wen Li,Xi-Ying Tu,Pengfei Yu,Lei Xiang,Hai-Ming Zhao,Nai-Xian Feng,Hui Li,Quan-Ying Cai,Ce-Hui Mo,Ming Hung Wong
标识
DOI:10.1021/acs.jafc.1c03918
摘要
Microcystins (MCs) are hepatotoxic heptapeptides identified in cyanobacterial bloom-impacted waters and soils. However, their environmental fate in soils is poorly understood, preventing reliable site assessment. This study aims to clarify the variant-specific adsorption, desorption, and dissipation of MC-LR and MC-RR in agricultural soils. Results revealed that their adsorption isotherms followed the Freundlich model (R2 ≥ 0.96), exhibiting a higher nonlinear trend and lower adsorption capacity for MC-LR than for MC-RR. The soils had low desorption rates of 8.14-21.06% and 3.06-34.04%, respectively, following a 24 h desorption cycle. Pairwise comparison indicated that soil pH and clay played key roles in MC-LR adsorption and desorption, while organic matter and cation exchange capacity played key roles in those of MC-RR. MC-LR dissipation half-lives in soils were 27.18-42.52 days, compared with 35.19-43.87 days for MC-RR. Specifically, an appreciable decrease in MC concentration in sterile soils suggested the significant role of abiotic degradation. This study demonstrates that the minor structural changes in MCs might have major effects on their environmental fates in agricultural soil and indicates that the toxic effects of MCs should be of high concern due to high adsorption, low desorption, and slow dissipation.
科研通智能强力驱动
Strongly Powered by AbleSci AI