Fast Beam Training and Alignment for IRS-Assisted Millimeter Wave/Terahertz Systems

太赫兹辐射 极高频率 计算机科学 毫米 光学 天线(收音机) 物理 梁(结构)
作者
Peilan Wang,Jun Fang,Wei Zhang,Hongbin Li
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/twc.2021.3115152
摘要

Intelligent reflecting surface (IRS) has emerged as a competitive solution to address blockage issues in millimeter wave (mmWave) and Terahertz (THz) communications due to its capability of reshaping wireless transmission environments. Nevertheless, obtaining the channel state information of IRS-assisted systems is quite challenging because of the passive characteristics of the IRS. In this paper, we develop an efficient downlink beam training/alignment method for IRS-assisted mmWave/THz systems. Specifically, by exploiting the inherent sparse structure of the base station-IRS-user cascade channel, the beam training problem is formulated as a joint sparse sensing and phaseless estimation problem, which involves devising a sparse sensing matrix and developing an efficient estimation algorithm to identify the best beam alignment from compressive phaseless measurements. Theoretical analysis reveals that the proposed method can identify the best alignment with only a modest amount of training overhead. Numerical results show that, for both line-of-sight (LOS) and NLOS scenarios, the proposed method obtains a significant performance improvement over existing state-of-the-art methods. Notably, it can achieve performance close to that of the exhaustive beam search scheme, while reducing the training overhead by 95%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三七037发布了新的文献求助10
刚刚
英俊的铭应助闪闪采纳,获得10
1秒前
精明的问芙完成签到,获得积分10
1秒前
Owen应助苏州河采纳,获得10
1秒前
无wu发布了新的文献求助10
3秒前
5秒前
香蕉觅云应助PP采纳,获得10
5秒前
5秒前
6秒前
隐形曼青应助xyz采纳,获得40
6秒前
6秒前
7秒前
7秒前
7秒前
脑洞疼应助无wu采纳,获得10
9秒前
CodeCraft应助滕侑林采纳,获得10
9秒前
Bethune124完成签到 ,获得积分10
10秒前
10秒前
Fh发布了新的文献求助10
10秒前
10秒前
11秒前
laser完成签到,获得积分10
11秒前
龚幻梦发布了新的文献求助80
11秒前
11秒前
调研昵称发布了新的文献求助10
12秒前
13秒前
米奇发布了新的文献求助30
13秒前
13秒前
laser发布了新的文献求助30
13秒前
诚心逊发布了新的文献求助10
14秒前
MC发布了新的文献求助10
14秒前
琪音_xy完成签到,获得积分10
14秒前
潇洒发布了新的文献求助30
15秒前
16秒前
zyd发布了新的文献求助10
16秒前
17秒前
PP发布了新的文献求助10
18秒前
欢喜嘻嘻发布了新的文献求助10
19秒前
19秒前
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483822
求助须知:如何正确求助?哪些是违规求助? 3073054
关于积分的说明 9129181
捐赠科研通 2764683
什么是DOI,文献DOI怎么找? 1517299
邀请新用户注册赠送积分活动 702065
科研通“疑难数据库(出版商)”最低求助积分说明 700880