已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LFIC: Identifying Influential Nodes in Complex Networks by Local Fuzzy Information Centrality

中心性 计算机科学 模糊逻辑 复杂网络 数据挖掘 模糊集 电子邮件 理论计算机科学 人工智能 数学 电信 统计 万维网
作者
Haotian Zhang,Shen Zhong,Yong Deng,Kang Hao Cheong
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (8): 3284-3296 被引量:50
标识
DOI:10.1109/tfuzz.2021.3112226
摘要

The issue of mining influential nodes in complex networks is a topic of immense interest. Recently, many methods have been proposed, but they suffer from certain limitations. In this article, a novel centrality measure based on local fuzzy information centrality (LFIC) is proposed. LFIC puts forward the concept that the inner structure of a node's box contains information about the node's importance. LFIC uses the amount of information contained in the node's box as a measure of its importance. In LFIC, the uncertainty of information contained in nodes' boxes is measured by the improved Shannon entropy. Most importantly, fuzzy logic is applied to deal with the uncertainty of neighbor nodes' contributions to the center node's importance, which is neglected by most existing methods. To verify the effectiveness of our proposed method, six existing methods are used for comparison and five experiments are conducted using six real-world complex networks. The experimental results indicate that the influential nodes identified by LFIC can cause a wider scope of infection in networks and have a larger effect on the network connectivity, thereby proving the effectiveness and accuracy of LFIC. The correlation between nodes' LFIC values and their real infection ability is highly positive according to Kendall's tau coefficient, proving LFIC's credibility and superiority. The extension of LFIC, namely the bi-directional local fuzzy information centrality, is also proposed to explore its feasibility in weighted directed complex networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助浚承采纳,获得10
1秒前
铮铮铁骨发布了新的文献求助10
1秒前
JayZ完成签到,获得积分10
1秒前
眼睛大向露完成签到 ,获得积分10
2秒前
雪雪完成签到 ,获得积分10
2秒前
惟海完成签到 ,获得积分10
4秒前
广州小肥羊完成签到 ,获得积分10
5秒前
小蘑菇应助幽默尔蓝采纳,获得10
7秒前
7秒前
12秒前
new完成签到 ,获得积分10
13秒前
13秒前
平底锅攻击完成签到 ,获得积分10
14秒前
张子捷发布了新的文献求助10
14秒前
马燕颜发布了新的文献求助10
16秒前
16秒前
new关注了科研通微信公众号
16秒前
CC完成签到 ,获得积分10
17秒前
17秒前
张轩发布了新的文献求助10
18秒前
20秒前
欧气满满完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
田様应助科研通管家采纳,获得10
21秒前
不配.应助科研通管家采纳,获得50
21秒前
烟花应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
Gxmmmm_应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
orixero应助科研通管家采纳,获得10
23秒前
Gxmmmm_应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924963
求助须知:如何正确求助?哪些是违规求助? 4195117
关于积分的说明 13030291
捐赠科研通 3966853
什么是DOI,文献DOI怎么找? 2174302
邀请新用户注册赠送积分活动 1191684
关于科研通互助平台的介绍 1101172