LFIC: Identifying Influential Nodes in Complex Networks by Local Fuzzy Information Centrality

中心性 计算机科学 模糊逻辑 复杂网络 数据挖掘 模糊集 电子邮件 理论计算机科学 人工智能 数学 电信 统计 万维网
作者
Haotian Zhang,Shen Zhong,Yong Deng,Kang Hao Cheong
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (8): 3284-3296 被引量:72
标识
DOI:10.1109/tfuzz.2021.3112226
摘要

The issue of mining influential nodes in complex networks is a topic of immense interest. Recently, many methods have been proposed, but they suffer from certain limitations. In this article, a novel centrality measure based on local fuzzy information centrality (LFIC) is proposed. LFIC puts forward the concept that the inner structure of a node's box contains information about the node's importance. LFIC uses the amount of information contained in the node's box as a measure of its importance. In LFIC, the uncertainty of information contained in nodes' boxes is measured by the improved Shannon entropy. Most importantly, fuzzy logic is applied to deal with the uncertainty of neighbor nodes' contributions to the center node's importance, which is neglected by most existing methods. To verify the effectiveness of our proposed method, six existing methods are used for comparison and five experiments are conducted using six real-world complex networks. The experimental results indicate that the influential nodes identified by LFIC can cause a wider scope of infection in networks and have a larger effect on the network connectivity, thereby proving the effectiveness and accuracy of LFIC. The correlation between nodes' LFIC values and their real infection ability is highly positive according to Kendall's tau coefficient, proving LFIC's credibility and superiority. The extension of LFIC, namely the bi-directional local fuzzy information centrality, is also proposed to explore its feasibility in weighted directed complex networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴乐巧发布了新的文献求助10
刚刚
小马甲应助hgzz采纳,获得10
刚刚
1秒前
1秒前
吕建安发布了新的文献求助10
1秒前
ding应助虚幻小凡采纳,获得10
1秒前
天天开心完成签到 ,获得积分10
2秒前
2秒前
Ashley发布了新的文献求助10
2秒前
木槿应助cchh采纳,获得20
3秒前
3秒前
3秒前
4秒前
4秒前
1234发布了新的文献求助10
4秒前
Mortal完成签到 ,获得积分10
5秒前
是阿刁完成签到,获得积分10
5秒前
5秒前
紫烨完成签到,获得积分10
5秒前
blue完成签到,获得积分10
5秒前
lele发布了新的文献求助10
6秒前
文艺的鬼神完成签到,获得积分20
6秒前
amape发布了新的文献求助10
6秒前
鳗鱼饭饭发布了新的文献求助10
6秒前
6秒前
z7发布了新的文献求助10
6秒前
有趣的桃应助weing采纳,获得10
7秒前
希望天下0贩的0应助十一采纳,获得10
7秒前
orixero应助Kra采纳,获得10
7秒前
LJHUA完成签到,获得积分10
8秒前
8秒前
zhutae完成签到,获得积分10
8秒前
Mortal关注了科研通微信公众号
8秒前
张坤发布了新的文献求助10
9秒前
Hello应助Ashley采纳,获得10
9秒前
ily.发布了新的文献求助10
9秒前
利多卡因发布了新的文献求助10
9秒前
zhuyt完成签到,获得积分10
9秒前
坚强丹雪完成签到,获得积分10
10秒前
zhq发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468720
求助须知:如何正确求助?哪些是违规求助? 4572113
关于积分的说明 14333499
捐赠科研通 4498847
什么是DOI,文献DOI怎么找? 2464734
邀请新用户注册赠送积分活动 1453361
关于科研通互助平台的介绍 1427921