LFIC: Identifying Influential Nodes in Complex Networks by Local Fuzzy Information Centrality

中心性 计算机科学 节点(物理) 熵(时间箭头) 模糊逻辑 复杂网络 数据挖掘 可靠性 度量(数据仓库) 范围(计算机科学) 理论计算机科学 人工智能 数学 统计 结构工程 量子力学 物理 工程类 万维网 程序设计语言 法学 政治学
作者
Haotian Zhang,Shen Zhong,Yong Deng,Kang Hao Cheong
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (8): 3284-3296 被引量:40
标识
DOI:10.1109/tfuzz.2021.3112226
摘要

The issue of mining influential nodes in complex networks is a topic of immense interest. Recently, many methods have been proposed, but they suffer from certain limitations. In this article, a novel centrality measure based on local fuzzy information centrality (LFIC) is proposed. LFIC puts forward the concept that the inner structure of a node’s box contains information about the node’s importance. LFIC uses the amount of information contained in the node’s box as a measure of its importance. In LFIC, the uncertainty of information contained in nodes’ boxes is measured by the improved Shannon entropy. Most importantly, fuzzy logic is applied to deal with the uncertainty of neighbor nodes’ contributions to the center node’s importance, which is neglected by most existing methods. To verify the effectiveness of our proposed method, six existing methods are used for comparison and five experiments are conducted using six real-world complex networks. The experimental results indicate that the influential nodes identified by LFIC can cause a wider scope of infection in networks and have a larger effect on the network connectivity, thereby proving the effectiveness and accuracy of LFIC. The correlation between nodes’ LFIC values and their real infection ability is highly positive according to Kendall’s tau coefficient, proving LFIC’s credibility and superiority. The extension of LFIC, namely the bi-directional local fuzzy information centrality, is also proposed to explore its feasibility in weighted directed complex networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
66发布了新的文献求助10
1秒前
2秒前
大模型应助敢敢采纳,获得10
2秒前
3秒前
4秒前
4秒前
5秒前
PigPig发布了新的文献求助10
5秒前
5秒前
5秒前
领导范儿应助66采纳,获得10
5秒前
仁爱的可乐完成签到,获得积分10
5秒前
完美世界应助淡淡的沅采纳,获得30
6秒前
俏皮芹完成签到,获得积分10
6秒前
6秒前
baibaibai完成签到,获得积分10
6秒前
6秒前
7秒前
hjc发布了新的文献求助10
8秒前
9秒前
9秒前
ACOY应助llj采纳,获得10
9秒前
灿灿应助llj采纳,获得10
9秒前
wallonce发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
蜜CC发布了新的文献求助10
12秒前
自觉蘑菇完成签到,获得积分10
12秒前
12秒前
Qing发布了新的文献求助30
12秒前
ximomm完成签到,获得积分10
13秒前
Tutusamo完成签到 ,获得积分10
13秒前
wang完成签到,获得积分10
13秒前
14秒前
小二郎应助刚刚好采纳,获得10
15秒前
垚乐应助朱湋帆采纳,获得10
16秒前
单薄之瑶发布了新的文献求助10
18秒前
小柯完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304191
求助须知:如何正确求助?哪些是违规求助? 2938204
关于积分的说明 8487761
捐赠科研通 2612613
什么是DOI,文献DOI怎么找? 1426765
科研通“疑难数据库(出版商)”最低求助积分说明 662825
邀请新用户注册赠送积分活动 647344