已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LFIC: Identifying Influential Nodes in Complex Networks by Local Fuzzy Information Centrality

中心性 计算机科学 模糊逻辑 复杂网络 数据挖掘 模糊集 电子邮件 理论计算机科学 人工智能 数学 电信 统计 万维网
作者
Haotian Zhang,Shen Zhong,Yong Deng,Kang Hao Cheong
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (8): 3284-3296 被引量:72
标识
DOI:10.1109/tfuzz.2021.3112226
摘要

The issue of mining influential nodes in complex networks is a topic of immense interest. Recently, many methods have been proposed, but they suffer from certain limitations. In this article, a novel centrality measure based on local fuzzy information centrality (LFIC) is proposed. LFIC puts forward the concept that the inner structure of a node's box contains information about the node's importance. LFIC uses the amount of information contained in the node's box as a measure of its importance. In LFIC, the uncertainty of information contained in nodes' boxes is measured by the improved Shannon entropy. Most importantly, fuzzy logic is applied to deal with the uncertainty of neighbor nodes' contributions to the center node's importance, which is neglected by most existing methods. To verify the effectiveness of our proposed method, six existing methods are used for comparison and five experiments are conducted using six real-world complex networks. The experimental results indicate that the influential nodes identified by LFIC can cause a wider scope of infection in networks and have a larger effect on the network connectivity, thereby proving the effectiveness and accuracy of LFIC. The correlation between nodes' LFIC values and their real infection ability is highly positive according to Kendall's tau coefficient, proving LFIC's credibility and superiority. The extension of LFIC, namely the bi-directional local fuzzy information centrality, is also proposed to explore its feasibility in weighted directed complex networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
5秒前
6秒前
朱金雨完成签到 ,获得积分10
6秒前
7秒前
囡囡发布了新的文献求助10
9秒前
9秒前
mxh发布了新的文献求助10
11秒前
11秒前
13秒前
CodeCraft应助瘦瘦大白采纳,获得10
14秒前
Ykaor完成签到 ,获得积分10
14秒前
15秒前
16秒前
16秒前
汉堡包应助伶俐的高烽采纳,获得10
17秒前
守护星星发布了新的文献求助10
19秒前
19秒前
天天快乐应助sci一点就通采纳,获得10
20秒前
21秒前
贪玩梦山发布了新的文献求助10
22秒前
24秒前
守护星星完成签到,获得积分10
26秒前
欢呼宛秋完成签到,获得积分10
27秒前
211JZH完成签到 ,获得积分10
27秒前
完美世界应助mxh采纳,获得10
28秒前
大龙完成签到 ,获得积分10
28秒前
月子淇应助霸气的金鱼采纳,获得10
30秒前
30秒前
1123完成签到 ,获得积分10
31秒前
31秒前
南寅完成签到,获得积分10
33秒前
heihei完成签到,获得积分10
33秒前
Cosmosurfer完成签到,获得积分10
33秒前
dida发布了新的文献求助10
34秒前
瘦瘦大白发布了新的文献求助10
34秒前
35秒前
灵巧的嚣完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476217
求助须知:如何正确求助?哪些是违规求助? 4577883
关于积分的说明 14363077
捐赠科研通 4505789
什么是DOI,文献DOI怎么找? 2468870
邀请新用户注册赠送积分活动 1456491
关于科研通互助平台的介绍 1430126