LFIC: Identifying Influential Nodes in Complex Networks by Local Fuzzy Information Centrality

中心性 计算机科学 模糊逻辑 复杂网络 数据挖掘 模糊集 电子邮件 理论计算机科学 人工智能 数学 电信 统计 万维网
作者
Haotian Zhang,Shen Zhong,Yong Deng,Kang Hao Cheong
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (8): 3284-3296 被引量:50
标识
DOI:10.1109/tfuzz.2021.3112226
摘要

The issue of mining influential nodes in complex networks is a topic of immense interest. Recently, many methods have been proposed, but they suffer from certain limitations. In this article, a novel centrality measure based on local fuzzy information centrality (LFIC) is proposed. LFIC puts forward the concept that the inner structure of a node's box contains information about the node's importance. LFIC uses the amount of information contained in the node's box as a measure of its importance. In LFIC, the uncertainty of information contained in nodes' boxes is measured by the improved Shannon entropy. Most importantly, fuzzy logic is applied to deal with the uncertainty of neighbor nodes' contributions to the center node's importance, which is neglected by most existing methods. To verify the effectiveness of our proposed method, six existing methods are used for comparison and five experiments are conducted using six real-world complex networks. The experimental results indicate that the influential nodes identified by LFIC can cause a wider scope of infection in networks and have a larger effect on the network connectivity, thereby proving the effectiveness and accuracy of LFIC. The correlation between nodes' LFIC values and their real infection ability is highly positive according to Kendall's tau coefficient, proving LFIC's credibility and superiority. The extension of LFIC, namely the bi-directional local fuzzy information centrality, is also proposed to explore its feasibility in weighted directed complex networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲍建芳完成签到,获得积分10
1秒前
烟花应助@@@采纳,获得10
1秒前
zx598376321完成签到,获得积分10
1秒前
YL发布了新的文献求助10
1秒前
1秒前
CodeCraft应助nenshen采纳,获得10
1秒前
熊二完成签到,获得积分10
2秒前
33完成签到 ,获得积分10
2秒前
酷波er应助高贵路灯采纳,获得10
2秒前
Aten完成签到,获得积分10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
明理楷瑞完成签到,获得积分10
2秒前
云舒应助科研通管家采纳,获得40
2秒前
SYLH应助科研通管家采纳,获得20
2秒前
思源应助科研通管家采纳,获得50
2秒前
Linda完成签到 ,获得积分10
2秒前
SYLH应助科研通管家采纳,获得20
3秒前
英姑应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
wisdom应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
64658应助科研通管家采纳,获得10
3秒前
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
酷炫翠桃应助科研通管家采纳,获得10
3秒前
雷雨泽石完成签到,获得积分10
3秒前
3秒前
3秒前
Bonnie完成签到 ,获得积分20
4秒前
海风发布了新的文献求助10
4秒前
5秒前
燃燃完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
。。。完成签到,获得积分10
6秒前
奥特超曼应助ark861023采纳,获得10
6秒前
AAA电池批发顾总完成签到,获得积分10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582