已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Genetic deletion of Vegfr2 in endothelial cells leads to immediate disruption of tumor vessels and aggravation of hypoxia.

作者
Yasuaki Kido,Tomofumi Ando,Takahito Iga,Masatsugu Ema,Yoshiaki Kubota,Ikue Tai-Nagara
出处
期刊:American Journal of Pathology [Elsevier]
标识
DOI:10.1016/j.ajpath.2021.11.003
摘要

Abstract Vascular endothelial growth factor (VEGF) blockers are used widely in clinics to target various types of human cancer. Although VEGF blockers exert marked tumor suppressive effects, the therapeutic effects can be limited. Moreover, accumulating evidence shows that VEGF acts not just on endothelial cells but also on various non-endothelial cells, including tumor and immune cells, suggesting a need to revisit the bona fide action of VEGF on endothelial cells using specific genetic mouse models. Here, tamoxifen-inducible endothelial-specific knockout mice lacking Vegfr2, the major signal transducer for VEGF, were used. The initial event resulting from cessation of endothelial Vegfr2 signaling was vascular truncation and fragmentation, rather than maturation of abnormalized vessels. Although deletion of endothelial Vegfr2 suppressed intra-tumor hemorrhage, it enhanced hypoxia in tumor cells and reduced the number of infiltrating cytotoxic T cells, suggesting a profound reduction in intra-tumor blood flow. In various tissues, deletion of endothelial Vegfr2 induced regression of healthy capillaries in intestinal villi substantiating intestinal perforation, which is one of the most common side effects of VEGF blockade in humans. Overall, the data suggest that some of the known effects of VEGF blockers on tumor vessels are caused by partial cessation of VEGF signaling, or by actions on non-endothelial cells. The results increase the understanding of the mechanisms underlying anti-angiogenic therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助饱满的琦采纳,获得10
刚刚
聪明夏波发布了新的文献求助10
1秒前
3秒前
4秒前
Orange应助momo采纳,获得10
6秒前
7秒前
离研通完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
yuanshuai完成签到,获得积分10
10秒前
13秒前
可不可以完成签到 ,获得积分10
14秒前
yuanshuai发布了新的文献求助10
15秒前
16秒前
17秒前
Akim应助神勇涵菡采纳,获得10
17秒前
852应助饱满的琦采纳,获得10
18秒前
面汤完成签到 ,获得积分10
18秒前
科研小虫完成签到,获得积分10
21秒前
21秒前
善学以致用应助Moon采纳,获得10
24秒前
26秒前
31秒前
33秒前
香蕉觅云应助七宝大当家采纳,获得10
34秒前
何大青发布了新的文献求助10
34秒前
35秒前
清秀芝麻完成签到 ,获得积分10
36秒前
37秒前
mm完成签到,获得积分10
37秒前
39秒前
39秒前
39秒前
40秒前
jokerhoney完成签到,获得积分0
40秒前
传统的戎发布了新的文献求助10
42秒前
mm发布了新的文献求助10
44秒前
雾里发布了新的文献求助10
44秒前
111完成签到 ,获得积分10
49秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663955
求助须知:如何正确求助?哪些是违规求助? 4855366
关于积分的说明 15106647
捐赠科研通 4822329
什么是DOI,文献DOI怎么找? 2581405
邀请新用户注册赠送积分活动 1535540
关于科研通互助平台的介绍 1493816