Expectation Propagation Aided Signal Detection for Uplink Massive Generalized Spatial Modulation MIMO Systems

因子图 电信线路 多输入多输出 算法 计算机科学 探测理论 协方差 数学 电信 统计 解码方法 频道(广播) 探测器
作者
Zhenyu Zhang,Caihong Gong,Yuanyuan Dong,Xiyuan Wang,Xiaoming Dai
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 2006-2018 被引量:2
标识
DOI:10.1109/twc.2021.3108852
摘要

In this paper, we propose a joint signal detection algorithm under the framework of the expectation propagation (EP) algorithm for uplink massive multiuser multiple-input multiple-output (MIMO) systems with generalized spatial modulation (GSM). By projecting the discrete probability distribution into a multivariate complex Gaussian function, the symbol beliefs of the tridimensional GSM constellation are calculated via the iterative propagation of the mean vectors and covariance matrices. To reduce the computational complexity, an efficient separate signal detection called two-stage EP (TS-EP) algorithm is designed. In the first stage, the active transmit antenna indices are determined via the EP. Each vector-valued variable node (VN) in the factor graph is decomposed into multiple sub-VNs, and the invalid sub-VNs of the determined silent transmit antennas are pruned from the factor graph. In the second stage, since the modulation symbols are independent conditioned on the active transmit antennas, the symbols are independently detected by adopting the EP with univariate complex Gaussian approximations, and the number of probability calculations for each symbol belief is significantly reduced in the subsequent EP update. Simulation results illustrate that the proposed EP and TS-EP signal detection schemes outperform the recently proposed counterparts. Moreover, the proposed TS-EP algorithm strikes a desirable and flexible performance-complexity tradeoff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hannah17完成签到,获得积分10
1秒前
李爱国应助大壮采纳,获得10
1秒前
1秒前
sjdove发布了新的文献求助10
2秒前
Mystttic完成签到,获得积分10
2秒前
洁净乐松应助葛怀锐采纳,获得10
2秒前
英姑应助又又采纳,获得10
2秒前
3秒前
一一发布了新的文献求助10
3秒前
顺利毕业发布了新的文献求助10
3秒前
5秒前
5秒前
香蕉梨愁完成签到 ,获得积分10
5秒前
6秒前
pcr163应助兼听则明采纳,获得50
6秒前
西西完成签到,获得积分10
6秒前
yw发布了新的文献求助30
6秒前
7秒前
7秒前
uuh完成签到,获得积分10
8秒前
xbnie完成签到,获得积分10
8秒前
思源应助yu采纳,获得10
8秒前
9秒前
鹿友绿完成签到,获得积分10
9秒前
贰鸟发布了新的文献求助70
9秒前
甜甜语堂发布了新的文献求助10
9秒前
Cymatics发布了新的文献求助10
11秒前
magneto发布了新的文献求助10
11秒前
11秒前
F少发布了新的文献求助10
12秒前
JoaquinH完成签到,获得积分10
12秒前
打打应助煎炒焖煮炸培根采纳,获得10
12秒前
爱吃香骨鸡完成签到,获得积分10
12秒前
华仔应助小林采纳,获得10
13秒前
英俊的铭应助island采纳,获得10
13秒前
李爱国应助sjdove采纳,获得10
13秒前
izzhan完成签到,获得积分10
13秒前
渣渣辉啦完成签到,获得积分10
14秒前
ma化疼没木完成签到,获得积分10
14秒前
ningning完成签到 ,获得积分10
14秒前
高分求助中
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
The Enzymes,Tyrosinase Volume 56 200
Cardiac arrhythmia classification of imbalanced data using convolutional autoencoder and LSTM techniques 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702554
求助须知:如何正确求助?哪些是违规求助? 3252352
关于积分的说明 9879214
捐赠科研通 2964416
什么是DOI,文献DOI怎么找? 1625662
邀请新用户注册赠送积分活动 770185
科研通“疑难数据库(出版商)”最低求助积分说明 742869