Online Causal Feature Selection for Streaming Features

特征选择 特征(语言学) 马尔可夫毯 计算机科学 可解释性 人工智能 机器学习 数据挖掘 选择(遗传算法) 流式数据 可预测性 模式识别(心理学) 数学 统计 马尔可夫链 马尔可夫模型 哲学 马尔可夫性质 语言学
作者
Dianlong You,Ruiqi Li,Shunpan Liang,Mucun Sun,Xinju Ou,F. Yuan,Limin Shen,Xindong Wu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1563-1577 被引量:9
标识
DOI:10.1109/tnnls.2021.3105585
摘要

Recently, causal feature selection (CFS) has attracted considerable attention due to its outstanding interpretability and predictability performance. Such a method primarily includes the Markov blanket (MB) discovery and feature selection based on Granger causality. Representatively, the max–min MB (MMMB) can mine an optimal feature subset, i.e., MB; however, it is unsuitable for streaming features. Online streaming feature selection (OSFS) via online process streaming features can determine parents and children (PC), a subset of MB; however, it cannot mine the MB of the target attribute ( $T$ ), i.e., a given feature, thus resulting in insufficient prediction accuracy. The Granger selection method (GSM) establishes a causal matrix of all features by performing excessively time; however, it cannot achieve a high prediction accuracy and only forecasts fixed multivariate time series data. To address these issues, we proposed an online CFS for streaming features (OCFSSFs) that mine MB containing PC and spouse and adopt the interleaving PC and spouse learning method. Furthermore, it distinguishes between PC and spouse in real time and can identify children with parents online when identifying spouses. We experimentally evaluated the proposed algorithm on synthetic datasets using precision, recall, and distance. In addition, the algorithm was tested on real-world and time series datasets using classification precision, the number of selected features, and running time. The results validated the effectiveness of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Damocles发布了新的文献求助10
1秒前
1秒前
1秒前
3秒前
3秒前
4秒前
5秒前
Li完成签到,获得积分10
5秒前
xiaoyu关注了科研通微信公众号
6秒前
6秒前
6秒前
yu发布了新的文献求助10
6秒前
7秒前
马尼拉发布了新的文献求助30
7秒前
8秒前
啦啦啦发布了新的文献求助10
9秒前
充电宝应助研友_闾丘枫采纳,获得10
9秒前
Timon发布了新的文献求助10
11秒前
一只黑麂发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
13秒前
16秒前
17秒前
17秒前
17秒前
18秒前
幸福大白发布了新的文献求助10
18秒前
爆米花应助明亮无颜采纳,获得10
19秒前
zxvcbnm发布了新的文献求助10
21秒前
cbbc发布了新的文献求助10
21秒前
LMFY完成签到 ,获得积分10
21秒前
陈业鹏发布了新的文献求助10
22秒前
苗条元霜发布了新的文献求助10
22秒前
22秒前
丘比特应助一只黑麂采纳,获得30
22秒前
23秒前
老肥彭发布了新的文献求助10
23秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133336
求助须知:如何正确求助?哪些是违规求助? 2784459
关于积分的说明 7766779
捐赠科研通 2439644
什么是DOI,文献DOI怎么找? 1296912
科研通“疑难数据库(出版商)”最低求助积分说明 624809
版权声明 600771