Pressure-driven power generation and ion separation using a non-uniformly charged nanopore

渗透力 纳米孔 表面电荷 纳滤 电荷密度 海水淡化 浓差极化 离子 纳米技术 功率密度 材料科学 流动电流 化学物理 光电子学 电场 化学 纳米流体学 电动现象 功率(物理) 反渗透 热力学 物理 物理化学 正渗透 量子力学 有机化学 生物化学
作者
Yueting Chen,Jyh‐Ping Hsu
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:607: 1120-1130 被引量:10
标识
DOI:10.1016/j.jcis.2021.09.055
摘要

Due to its versatile potential applications, nanofluidic devices have drawn much attention of researches in various fields. Among these, pressure-driven power generation is considered as a candidate for the next generation alternative green energy source, and pressure-driven ion separation (nanofiltration) for desalination. Aiming to achieve a better performance in these two representative cases, a cylindrical nanopore having different types of non-uniform surface charge profile is adopted, and its performance under various conditions assessed. We show that lower the surface charge density near the nanopore inlet region can suppress the effect of ion concentration polarization (ICP) and improve the selectivity, thereby enhancing appreciably its power generation performance. For a fixed averaged surface charge density, if the bulk salt concentration is low, the higher the surface charge density near the nanopore openings, the better its performance. The degree of ICP can be alleviated by applying a sufficiently large pressure difference. Although previous studies showed that salt rejection is influenced significantly by the profile of the electric field inside a nanopore, we find that the electric field at nanopore openings also plays a role. Through choosing appropriately the surface charge profile, it is possible to solve the trade-off between rejection and flow rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鲤鱼念真发布了新的文献求助10
1秒前
1秒前
赘婿应助cookiezhu01采纳,获得10
1秒前
1秒前
1秒前
1秒前
fanhlin完成签到,获得积分10
1秒前
2秒前
刘洁铮发布了新的文献求助10
2秒前
春夏完成签到,获得积分10
2秒前
夜小娘发布了新的文献求助10
2秒前
2秒前
728发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
春夏发布了新的文献求助30
4秒前
猪猪空发布了新的文献求助10
4秒前
4秒前
5秒前
陶醉飞阳完成签到,获得积分10
5秒前
槐序二三发布了新的文献求助10
5秒前
打打应助缺牙巴采纳,获得10
6秒前
哇哈哈哈发布了新的文献求助10
6秒前
兰兰猪头完成签到,获得积分20
6秒前
山茶花白玫瑰完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
迷路白枫发布了新的文献求助10
6秒前
6秒前
D&L发布了新的文献求助10
6秒前
华仔应助Keven采纳,获得10
6秒前
6S6完成签到,获得积分10
6秒前
candy发布了新的文献求助10
7秒前
7秒前
DY发布了新的文献求助10
7秒前
7秒前
orixero应助大脑洞少年采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648073
求助须知:如何正确求助?哪些是违规求助? 4774828
关于积分的说明 15042676
捐赠科研通 4807153
什么是DOI,文献DOI怎么找? 2570560
邀请新用户注册赠送积分活动 1527333
关于科研通互助平台的介绍 1486398