Threat Analysis for Automotive CAN Networks: A GAN Model-Based Intrusion Detection Technique

鉴别器 入侵检测系统 汽车工业 可用的 计算机科学 块(置换群论) 人工智能 深度学习 国家(计算机科学) 工程类 算法 电信 几何学 数学 探测器 万维网 航空航天工程
作者
Guoqi Xie,Laurence T. Yang,Yuanda Yang,Haibo Luo,Renfa Li,Mamoun Alazab
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:22 (7): 4467-4477 被引量:58
标识
DOI:10.1109/tits.2021.3055351
摘要

With the rapid development of Internet of vehicles, connected vehicles, autonomous vehicles, and autonomous driving technologies, automotive Controller Area Networks (CAN) have suffered from numerous security threats. Deep learning models are the current mainstream intrusion detection techniques for threat analysis, and the state-of-the-art intrusion detection technique introduces the Generative Adversarial Networks (GAN) model to generate usable attacked samples to supplement the training samples, but it exists the limitations of rough CAN message block construction and fails to detect the data tampering threat. Based on the CAN communication matrix defined by the automotive Original Equipment Manufacturer (OEM) for a vehicle model, we propose an enhanced deep learning GAN model with elaborate CAN message blocks and the enhanced GAN discriminator. The elaborate CAN message blocks in the training samples can precisely reflect the real generated CAN message blocks in the detection phase. The GAN discriminator can detect whether each message has suffered from the data tampering threat. Experimental results illustrate that the enhanced deep learning GAN model has higher detection accuracy, recall, and F1 scores than the state-of-the-art deep learning GAN model under various attacks and threats.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观的幼珊完成签到,获得积分10
刚刚
刚刚
1秒前
科目三应助自觉的溪灵采纳,获得10
1秒前
2秒前
2秒前
2秒前
蓝天应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
勤恳雅莉应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
勤恳雅莉应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
面向阳光应助科研通管家采纳,获得20
3秒前
超级幼旋应助科研通管家采纳,获得10
3秒前
3秒前
思源应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
4秒前
LHT发布了新的文献求助10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
s0x0y0发布了新的文献求助10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382