多目标优化
水准点(测量)
数学优化
重量
帕累托原理
集合(抽象数据类型)
矢量优化
计算机科学
进化算法
支持向量机
数学
分解
算法
最优化问题
人工智能
多群优化
生物
李代数
生态学
大地测量学
程序设计语言
纯数学
地理
作者
Tohru Takagi,Keiki Takadama,Hiroyuki Satō
出处
期刊:Congress on Evolutionary Computation
日期:2021-06-28
被引量:10
标识
DOI:10.1109/cec45853.2021.9504954
摘要
This work proposes an arrangement method of weight vectors using virtual objective vectors supplementing the Pareto front estimation. In decomposition-based evolutionary multi-objective optimization, weight vectors decompose the Pareto front. Appropriate weight vector distribution depends on the Pareto front shape, which is generally unknown before the search. Objective vectors of obtained non-dominated solutions become a clue to estimate the Pareto front shape and arrange an appropriate weight vector set. However, a sizeable objective vector set is required for a high-quality Pareto front estimation and weight vector arrangement. The proposed method generates and utilizes a virtual objective vector set based on the objective vectors of obtained non-dominated solutions and an extended weight vector set for the Pareto front estimation. Experimental results using benchmark problems with different Pareto front shapes show that the virtual objective vectors generated from a limited number of actual objective vectors contribute to improving the search performance of decomposition-based evolutionary multi-objective optimization.
科研通智能强力驱动
Strongly Powered by AbleSci AI