普鲁士蓝
单斜晶系
电化学
阴极
水溶液
Crystal(编程语言)
相(物质)
化学工程
材料科学
离子
溶剂
降水
化学
晶体结构
结晶学
纳米技术
电极
有机化学
物理化学
物理
工程类
气象学
程序设计语言
计算机科学
作者
Shunli He,Junmei Zhao,Xiaohui Rong,Chunliu Xu,Qiangqiang Zhang,Xing Shen,Xingguo Qi,Yuqi Li,Xinyan Li,Yaoshen Niu,Xiaowei Li,Shuai Han,Lin Gu,Huizhou Liu,Yong‐Sheng Hu
标识
DOI:10.1016/j.cej.2021.131083
摘要
Prussian blue analogs (PBAs) with rigid open framework are promising low-cost and easily prepared cathodes for Na-ion batteries. However, their electrochemical performances are hindered from the crystal vacancies and interstitial water in a traditional aqueous co-precipitation process. Herein, we explore a solvent-free mechanochemical protocol to prepare a monoclinic Na1.94Mn[Fe0.99(CN)6]0.95·□0.05·1.92H2O via regulating the crystal water in precursors. The interstitial water of NaMHCF can be further reduced through increasing the drying temperature. Ex-situ XRD confirms that the monoclinic phase transformed to the rhombohedral structure during the first cycle, and a highly reversible multi-phase evolution among rhombohedral, cubic, and Na-poor phase upon Na+ (de)intercalations occurred from the second cycle on. Finally, it delivers a specific capacity of 168.8 mA h g−1 with a stable average voltage of 3.44 V at 10 mA g−1, showing ultra-high rate capability (127 mA h g−1 at 2000 mA g−1) and cycling stability (87.6% capacity retention after 100 cycles at 100 mA g−1) for half cells. For the full cell of NaMHCF/NaTi2(PO4)3, it can deliver an ultra-stable cycle performance, retaining 84% capacity after 500 cycles at 100 mA g−1. Our work provides a facile avenue to prepare monoclinic NaMHCF with low water and vacancies for high-performance Na-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI