土壤碳
有机质
垃圾箱
环境化学
土壤有机质
植物凋落物
腐殖质
环境科学
土壤生物学
碳纤维
化学
土壤水分
土壤科学
生态学
碳循环
生态系统
生物
材料科学
复合数
复合材料
作者
Kristina Witzgall,Alix Vidal,David Schubert,Carmen Höschen,Steffen Schweizer,Franz Buegger,Valérie Pouteau,Claire Chenu,Carsten W. Mueller
标识
DOI:10.1038/s41467-021-24192-8
摘要
Abstract The largest terrestrial organic carbon pool, carbon in soils, is regulated by an intricate connection between plant carbon inputs, microbial activity, and the soil matrix. This is manifested by how microorganisms, the key players in transforming plant-derived carbon into soil organic carbon, are controlled by the physical arrangement of organic and inorganic soil particles. Here we conduct an incubation of isotopically labelled litter to study effects of soil structure on the fate of litter-derived organic matter. While microbial activity and fungal growth is enhanced in the coarser-textured soil, we show that occlusion of organic matter into aggregates and formation of organo-mineral associations occur concurrently on fresh litter surfaces regardless of soil structure. These two mechanisms—the two most prominent processes contributing to the persistence of organic matter—occur directly at plant–soil interfaces, where surfaces of litter constitute a nucleus in the build-up of soil carbon persistence. We extend the notion of plant litter, i.e., particulate organic matter, from solely an easily available and labile carbon substrate, to a functional component at which persistence of soil carbon is directly determined.
科研通智能强力驱动
Strongly Powered by AbleSci AI