中国仓鼠卵巢细胞
蛋白酶体
细胞生物学
细胞培养
重组DNA
细胞
生物
内质网相关蛋白降解
单克隆抗体
生物化学
化学
未折叠蛋白反应
抗体
内质网
免疫学
基因
遗传学
作者
Tanya J. Knight,Sarah J. Turner,Colin Jaques,C. Mark Smales
标识
DOI:10.1016/j.jbiotec.2021.06.019
摘要
Chinese hamster ovary (CHO) cells are the leading mammalian cell expression platform for biotherapeutic recombinant molecules yet some proteins remain difficult to express (DTE) in this, and other, systems. In recombinant cell lines expressing DTE proteins, cellular processes to restore proteostasis can be triggered when the folding and modification capabilities are exceeded, including the unfolded protein response and ER-associated degradation (ERAD) and proteasomal degradation. We therefore investigated whether the proteasome activity of CHO cells was linked to their ability to produce recombinant proteins. We found cell lines with diverse monoclonal antibody (mAb) productivity show different susceptibilities to inhibitors of proteasome activity. Subsequently, we applied selective pressure using proteasome inhibitors on mAb producing cells to determine the impact on cell growth and recombinant protein production, and to apply proteasome selective pressure above that of a metabolic selection marker during recombinant cell pool construction. The presence of proteasome inhibitors during cell pool construction expressing two different model molecules, including a DTE Fc-fusion protein, resulted in the generation of cell pools with enhanced productivity. The increased productivities, and ability to select for higher producing cells, has potential to improve clonal selection during upstream processes of DTE proteins.
科研通智能强力驱动
Strongly Powered by AbleSci AI