A feasibility study on the development and use of a deep learning model to automate real-time monitoring of tumor position and assessment of interfraction fiducial marker migration in prostate radiotherapy patients *

基准标记 成像体模 人工智能 流离失所(心理学) 核医学 放射治疗 计算机科学 医学 探测器 计算机视觉 放射科 心理学 电信 心理治疗师
作者
Ryan Motley,Prabhakar Ramachandran,Andrew Fielding
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:8 (3): 035009-035009 被引量:3
标识
DOI:10.1088/2057-1976/ac34da
摘要

Purpose. The aim of this study was to assess the feasibility of the development and training of a deep learning object detection model for automating the assessment of fiducial marker migration and tracking of the prostate in radiotherapy patients.Methods and Materials. A fiducial marker detection model was trained on the YOLO v2 detection framework using approximately 20,000 pelvis kV projection images with fiducial markers labelled. The ability of the trained model to detect marker positions was validated by tracking the motion of markers in a respiratory phantom and comparing detection data with the expected displacement from a reference position. Marker migration was then assessed in 14 prostate radiotherapy patients using the detector for comparison with previously conducted studies. This was done by determining variations in intermarker distance between the first and subsequent fractions in each patient.Results. On completion of training, a detection model was developed that operated at a 96% detection efficacy and with a root mean square error of 0.3 pixels. By determining the displacement from a reference position in a respiratory phantom, experimentally and with the detector it was found that the detector was able to compute displacements with a mean accuracy of 97.8% when compared to the actual values. Interfraction marker migration was measured in 14 patients and the average and maximum±standard deviation marker migration were found to be2.0±0.9mmand2.3±0.9mm,respectively.Conclusion. This study demonstrates the benefits of pairing deep learning object detection, and image-guided radiotherapy and how a workflow to automate the assessment of organ motion and seed migration during prostate radiotherapy can be developed. The high detection efficacy and low error make evident the advantages of using a pre-trained model to automate the assessment of the target volume positional variation and the migration of fiducial markers between fractions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccm应助xiaowu采纳,获得10
刚刚
doctor_lin发布了新的文献求助10
刚刚
1秒前
EV发布了新的文献求助10
3秒前
6秒前
科研通AI5应助boom采纳,获得10
8秒前
YYYYYY完成签到,获得积分10
9秒前
9秒前
暴躁的丝完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
zzzzzzzzzzzzb完成签到,获得积分10
16秒前
16秒前
16秒前
帝蒼完成签到,获得积分10
16秒前
17秒前
柠橙完成签到,获得积分10
18秒前
张贵川完成签到 ,获得积分10
19秒前
科研通AI6应助执着烧鹅采纳,获得10
19秒前
加油发布了新的文献求助50
20秒前
12完成签到,获得积分10
20秒前
张德帅完成签到,获得积分10
20秒前
boom发布了新的文献求助10
21秒前
呆萌的大炮完成签到,获得积分10
21秒前
pia叽完成签到 ,获得积分10
21秒前
caichengyu发布了新的文献求助10
21秒前
酷波er应助高高的网络采纳,获得10
24秒前
ding应助缓慢含烟采纳,获得10
24秒前
照亮世界的ay完成签到,获得积分10
26秒前
26秒前
26秒前
脑洞疼应助caichengyu采纳,获得10
28秒前
nikonikoni完成签到,获得积分10
28秒前
28秒前
boom完成签到,获得积分10
28秒前
Lynsey完成签到,获得积分10
29秒前
Huang发布了新的文献求助10
31秒前
amy发布了新的文献求助10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073428
求助须知:如何正确求助?哪些是违规求助? 4293518
关于积分的说明 13378782
捐赠科研通 4114951
什么是DOI,文献DOI怎么找? 2253260
邀请新用户注册赠送积分活动 1258050
关于科研通互助平台的介绍 1190911