A feasibility study on the development and use of a deep learning model to automate real-time monitoring of tumor position and assessment of interfraction fiducial marker migration in prostate radiotherapy patients *

基准标记 成像体模 人工智能 流离失所(心理学) 核医学 放射治疗 计算机科学 医学 探测器 计算机视觉 放射科 心理学 电信 心理治疗师
作者
Ryan Motley,Prabhakar Ramachandran,Andrew Fielding
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:8 (3): 035009-035009 被引量:3
标识
DOI:10.1088/2057-1976/ac34da
摘要

Purpose. The aim of this study was to assess the feasibility of the development and training of a deep learning object detection model for automating the assessment of fiducial marker migration and tracking of the prostate in radiotherapy patients.Methods and Materials. A fiducial marker detection model was trained on the YOLO v2 detection framework using approximately 20,000 pelvis kV projection images with fiducial markers labelled. The ability of the trained model to detect marker positions was validated by tracking the motion of markers in a respiratory phantom and comparing detection data with the expected displacement from a reference position. Marker migration was then assessed in 14 prostate radiotherapy patients using the detector for comparison with previously conducted studies. This was done by determining variations in intermarker distance between the first and subsequent fractions in each patient.Results. On completion of training, a detection model was developed that operated at a 96% detection efficacy and with a root mean square error of 0.3 pixels. By determining the displacement from a reference position in a respiratory phantom, experimentally and with the detector it was found that the detector was able to compute displacements with a mean accuracy of 97.8% when compared to the actual values. Interfraction marker migration was measured in 14 patients and the average and maximum±standard deviation marker migration were found to be2.0±0.9mmand2.3±0.9mm,respectively.Conclusion. This study demonstrates the benefits of pairing deep learning object detection, and image-guided radiotherapy and how a workflow to automate the assessment of organ motion and seed migration during prostate radiotherapy can be developed. The high detection efficacy and low error make evident the advantages of using a pre-trained model to automate the assessment of the target volume positional variation and the migration of fiducial markers between fractions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丰知然应助小点点采纳,获得10
1秒前
13发布了新的文献求助10
1秒前
Hu完成签到,获得积分20
2秒前
2秒前
Hayat发布了新的文献求助50
2秒前
烟花应助灵巧的石头采纳,获得10
2秒前
3秒前
大模型应助调皮的巧凡采纳,获得10
3秒前
3秒前
3秒前
别管我了完成签到,获得积分10
3秒前
4秒前
yxy发布了新的文献求助10
4秒前
健康小宋完成签到,获得积分10
4秒前
斯文败类应助CDX采纳,获得10
4秒前
善良的函发布了新的文献求助10
5秒前
打打应助含蓄的傲霜采纳,获得10
6秒前
7秒前
7秒前
8秒前
wanci应助13采纳,获得10
8秒前
silentforsure发布了新的文献求助10
9秒前
llyu完成签到,获得积分10
9秒前
嘟嘟完成签到,获得积分10
9秒前
樱书发布了新的文献求助10
9秒前
9秒前
binz完成签到,获得积分0
10秒前
奋力加载ing完成签到,获得积分20
11秒前
lzxucn发布了新的文献求助10
11秒前
在水一方应助灵巧的石头采纳,获得10
11秒前
3089ggf发布了新的文献求助10
11秒前
11秒前
123完成签到,获得积分20
12秒前
liua发布了新的文献求助10
12秒前
无情访琴发布了新的文献求助30
14秒前
量子星尘发布了新的文献求助10
15秒前
二甜发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578047
求助须知:如何正确求助?哪些是违规求助? 4663043
关于积分的说明 14744355
捐赠科研通 4603721
什么是DOI,文献DOI怎么找? 2526643
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465657