已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A feasibility study on the development and use of a deep learning model to automate real-time monitoring of tumor position and assessment of interfraction fiducial marker migration in prostate radiotherapy patients *

基准标记 成像体模 人工智能 流离失所(心理学) 核医学 放射治疗 计算机科学 医学 探测器 计算机视觉 放射科 心理学 电信 心理治疗师
作者
Ryan Motley,Prabhakar Ramachandran,Andrew Fielding
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:8 (3): 035009-035009 被引量:3
标识
DOI:10.1088/2057-1976/ac34da
摘要

Purpose. The aim of this study was to assess the feasibility of the development and training of a deep learning object detection model for automating the assessment of fiducial marker migration and tracking of the prostate in radiotherapy patients.Methods and Materials. A fiducial marker detection model was trained on the YOLO v2 detection framework using approximately 20,000 pelvis kV projection images with fiducial markers labelled. The ability of the trained model to detect marker positions was validated by tracking the motion of markers in a respiratory phantom and comparing detection data with the expected displacement from a reference position. Marker migration was then assessed in 14 prostate radiotherapy patients using the detector for comparison with previously conducted studies. This was done by determining variations in intermarker distance between the first and subsequent fractions in each patient.Results. On completion of training, a detection model was developed that operated at a 96% detection efficacy and with a root mean square error of 0.3 pixels. By determining the displacement from a reference position in a respiratory phantom, experimentally and with the detector it was found that the detector was able to compute displacements with a mean accuracy of 97.8% when compared to the actual values. Interfraction marker migration was measured in 14 patients and the average and maximum±standard deviation marker migration were found to be2.0±0.9mmand2.3±0.9mm,respectively.Conclusion. This study demonstrates the benefits of pairing deep learning object detection, and image-guided radiotherapy and how a workflow to automate the assessment of organ motion and seed migration during prostate radiotherapy can be developed. The high detection efficacy and low error make evident the advantages of using a pre-trained model to automate the assessment of the target volume positional variation and the migration of fiducial markers between fractions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
科目三应助张张采纳,获得10
3秒前
wam关闭了wam文献求助
3秒前
小盖发布了新的文献求助10
5秒前
6秒前
6秒前
科研通AI6应助喵晓懒采纳,获得10
6秒前
科研小巴发布了新的文献求助10
7秒前
BruceZh完成签到,获得积分10
9秒前
小蘑菇完成签到,获得积分10
9秒前
小盖完成签到,获得积分10
10秒前
务实的千风完成签到,获得积分10
12秒前
hxt发布了新的文献求助50
12秒前
sj发布了新的文献求助10
12秒前
pual完成签到,获得积分10
14秒前
易夜雨居完成签到 ,获得积分10
14秒前
昌莆完成签到 ,获得积分10
16秒前
健忘浩宇完成签到,获得积分10
17秒前
科研通AI6应助sensen采纳,获得10
19秒前
Criminology34应助务实的千风采纳,获得10
21秒前
22秒前
22秒前
msn00完成签到 ,获得积分10
25秒前
叶子完成签到 ,获得积分10
26秒前
26秒前
30秒前
幸运星完成签到 ,获得积分10
31秒前
哩哩完成签到 ,获得积分10
33秒前
浮游应助FWCY采纳,获得10
34秒前
余文乐完成签到 ,获得积分10
34秒前
35秒前
曾经易烟发布了新的文献求助10
37秒前
甜甜冰巧完成签到,获得积分20
37秒前
37秒前
39秒前
甜甜冰巧发布了新的文献求助10
40秒前
哈哈哈完成签到,获得积分10
40秒前
40秒前
动听的涵山完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627693
求助须知:如何正确求助?哪些是违规求助? 4714530
关于积分的说明 14963003
捐赠科研通 4785420
什么是DOI,文献DOI怎么找? 2555122
邀请新用户注册赠送积分活动 1516460
关于科研通互助平台的介绍 1476875