A feasibility study on the development and use of a deep learning model to automate real-time monitoring of tumor position and assessment of interfraction fiducial marker migration in prostate radiotherapy patients *

基准标记 成像体模 人工智能 流离失所(心理学) 核医学 放射治疗 计算机科学 医学 探测器 计算机视觉 放射科 心理学 电信 心理治疗师
作者
Ryan Motley,Prabhakar Ramachandran,Andrew Fielding
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:8 (3): 035009-035009 被引量:3
标识
DOI:10.1088/2057-1976/ac34da
摘要

Purpose. The aim of this study was to assess the feasibility of the development and training of a deep learning object detection model for automating the assessment of fiducial marker migration and tracking of the prostate in radiotherapy patients.Methods and Materials. A fiducial marker detection model was trained on the YOLO v2 detection framework using approximately 20,000 pelvis kV projection images with fiducial markers labelled. The ability of the trained model to detect marker positions was validated by tracking the motion of markers in a respiratory phantom and comparing detection data with the expected displacement from a reference position. Marker migration was then assessed in 14 prostate radiotherapy patients using the detector for comparison with previously conducted studies. This was done by determining variations in intermarker distance between the first and subsequent fractions in each patient.Results. On completion of training, a detection model was developed that operated at a 96% detection efficacy and with a root mean square error of 0.3 pixels. By determining the displacement from a reference position in a respiratory phantom, experimentally and with the detector it was found that the detector was able to compute displacements with a mean accuracy of 97.8% when compared to the actual values. Interfraction marker migration was measured in 14 patients and the average and maximum±standard deviation marker migration were found to be2.0±0.9mmand2.3±0.9mm,respectively.Conclusion. This study demonstrates the benefits of pairing deep learning object detection, and image-guided radiotherapy and how a workflow to automate the assessment of organ motion and seed migration during prostate radiotherapy can be developed. The high detection efficacy and low error make evident the advantages of using a pre-trained model to automate the assessment of the target volume positional variation and the migration of fiducial markers between fractions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西西完成签到,获得积分10
刚刚
QWE发布了新的文献求助10
刚刚
Jian发布了新的文献求助10
刚刚
笨维发布了新的文献求助10
刚刚
刚刚
好多鱼爱学习完成签到 ,获得积分10
刚刚
屈昭阳发布了新的文献求助10
1秒前
baobaoxiong完成签到,获得积分10
1秒前
1秒前
1秒前
蒋若风发布了新的文献求助10
1秒前
2秒前
songyk完成签到,获得积分10
2秒前
zhoumin完成签到,获得积分10
3秒前
3秒前
高高问夏完成签到,获得积分10
4秒前
4秒前
5秒前
jingjing完成签到 ,获得积分10
5秒前
6秒前
君尧发布了新的文献求助10
6秒前
FashionBoy应助王宽宽宽采纳,获得10
6秒前
6秒前
科研通AI6应助王志新采纳,获得10
6秒前
7秒前
魏家乐完成签到,获得积分10
7秒前
wyuwqhjp发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
酷酷怀曼完成签到,获得积分10
8秒前
华仔应助QWE采纳,获得10
8秒前
li发布了新的文献求助10
8秒前
hezhuyou发布了新的文献求助10
8秒前
江山完成签到,获得积分10
8秒前
8秒前
9秒前
斯文败类应助安安采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836