A feasibility study on the development and use of a deep learning model to automate real-time monitoring of tumor position and assessment of interfraction fiducial marker migration in prostate radiotherapy patients *

基准标记 成像体模 人工智能 流离失所(心理学) 核医学 放射治疗 计算机科学 医学 探测器 计算机视觉 放射科 心理学 电信 心理治疗师
作者
Ryan Motley,Prabhakar Ramachandran,Andrew Fielding
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:8 (3): 035009-035009 被引量:3
标识
DOI:10.1088/2057-1976/ac34da
摘要

Purpose. The aim of this study was to assess the feasibility of the development and training of a deep learning object detection model for automating the assessment of fiducial marker migration and tracking of the prostate in radiotherapy patients.Methods and Materials. A fiducial marker detection model was trained on the YOLO v2 detection framework using approximately 20,000 pelvis kV projection images with fiducial markers labelled. The ability of the trained model to detect marker positions was validated by tracking the motion of markers in a respiratory phantom and comparing detection data with the expected displacement from a reference position. Marker migration was then assessed in 14 prostate radiotherapy patients using the detector for comparison with previously conducted studies. This was done by determining variations in intermarker distance between the first and subsequent fractions in each patient.Results. On completion of training, a detection model was developed that operated at a 96% detection efficacy and with a root mean square error of 0.3 pixels. By determining the displacement from a reference position in a respiratory phantom, experimentally and with the detector it was found that the detector was able to compute displacements with a mean accuracy of 97.8% when compared to the actual values. Interfraction marker migration was measured in 14 patients and the average and maximum±standard deviation marker migration were found to be2.0±0.9mmand2.3±0.9mm,respectively.Conclusion. This study demonstrates the benefits of pairing deep learning object detection, and image-guided radiotherapy and how a workflow to automate the assessment of organ motion and seed migration during prostate radiotherapy can be developed. The high detection efficacy and low error make evident the advantages of using a pre-trained model to automate the assessment of the target volume positional variation and the migration of fiducial markers between fractions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大气的裙子完成签到,获得积分10
刚刚
牧海冬完成签到,获得积分10
刚刚
1秒前
lzy完成签到 ,获得积分10
1秒前
orixero应助geyunjie采纳,获得10
2秒前
2秒前
SunXinwei完成签到,获得积分10
3秒前
3秒前
wanci发布了新的文献求助20
3秒前
3秒前
Stella应助852采纳,获得10
4秒前
Zzz驳回了戴云溥应助
4秒前
友好灵松完成签到,获得积分10
4秒前
5秒前
5秒前
jun发布了新的文献求助10
5秒前
5秒前
灵巧谷波发布了新的文献求助10
6秒前
6秒前
freebird应助BEIBEI采纳,获得10
7秒前
7秒前
7秒前
HopeLee发布了新的文献求助10
7秒前
SccS发布了新的文献求助10
7秒前
拼搏蜗牛发布了新的文献求助10
8秒前
朱凌娇完成签到,获得积分10
8秒前
ji发布了新的文献求助10
8秒前
kryie发布了新的文献求助10
8秒前
9秒前
carnationli完成签到,获得积分20
9秒前
10秒前
77发布了新的文献求助10
10秒前
许容完成签到,获得积分10
10秒前
10秒前
夜琉璃应助头哥采纳,获得30
10秒前
全鑫完成签到,获得积分10
11秒前
11秒前
雪山飞龙发布了新的文献求助10
11秒前
jjjdj发布了新的文献求助10
11秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582358
求助须知:如何正确求助?哪些是违规求助? 4666421
关于积分的说明 14762778
捐赠科研通 4608475
什么是DOI,文献DOI怎么找? 2528699
邀请新用户注册赠送积分活动 1498050
关于科研通互助平台的介绍 1466736