A feasibility study on the development and use of a deep learning model to automate real-time monitoring of tumor position and assessment of interfraction fiducial marker migration in prostate radiotherapy patients *

基准标记 成像体模 人工智能 流离失所(心理学) 核医学 放射治疗 计算机科学 医学 探测器 计算机视觉 放射科 心理学 电信 心理治疗师
作者
Ryan Motley,Prabhakar Ramachandran,Andrew Fielding
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:8 (3): 035009-035009 被引量:3
标识
DOI:10.1088/2057-1976/ac34da
摘要

Purpose. The aim of this study was to assess the feasibility of the development and training of a deep learning object detection model for automating the assessment of fiducial marker migration and tracking of the prostate in radiotherapy patients.Methods and Materials. A fiducial marker detection model was trained on the YOLO v2 detection framework using approximately 20,000 pelvis kV projection images with fiducial markers labelled. The ability of the trained model to detect marker positions was validated by tracking the motion of markers in a respiratory phantom and comparing detection data with the expected displacement from a reference position. Marker migration was then assessed in 14 prostate radiotherapy patients using the detector for comparison with previously conducted studies. This was done by determining variations in intermarker distance between the first and subsequent fractions in each patient.Results. On completion of training, a detection model was developed that operated at a 96% detection efficacy and with a root mean square error of 0.3 pixels. By determining the displacement from a reference position in a respiratory phantom, experimentally and with the detector it was found that the detector was able to compute displacements with a mean accuracy of 97.8% when compared to the actual values. Interfraction marker migration was measured in 14 patients and the average and maximum±standard deviation marker migration were found to be2.0±0.9mmand2.3±0.9mm,respectively.Conclusion. This study demonstrates the benefits of pairing deep learning object detection, and image-guided radiotherapy and how a workflow to automate the assessment of organ motion and seed migration during prostate radiotherapy can be developed. The high detection efficacy and low error make evident the advantages of using a pre-trained model to automate the assessment of the target volume positional variation and the migration of fiducial markers between fractions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jenny应助淡定紫菱采纳,获得10
刚刚
逆流的鱼完成签到 ,获得积分10
1秒前
1秒前
liuqian完成签到,获得积分10
2秒前
Hou完成签到 ,获得积分10
2秒前
反杀闰土的猹完成签到 ,获得积分20
2秒前
所所应助cc采纳,获得10
3秒前
邵裘完成签到,获得积分10
3秒前
丘比特应助yin采纳,获得10
3秒前
4秒前
4秒前
4秒前
希望天下0贩的0应助sss采纳,获得20
4秒前
拼搏向前发布了新的文献求助10
4秒前
紫罗兰花海完成签到 ,获得积分10
5秒前
琪琪完成签到,获得积分10
6秒前
6秒前
爆米花应助高兴藏花采纳,获得10
6秒前
orixero应助Rrr采纳,获得10
6秒前
7秒前
张今天也要做科研呀完成签到,获得积分10
7秒前
humorlife完成签到,获得积分10
7秒前
打打应助给我找采纳,获得10
8秒前
酷波er应助谦让的含海采纳,获得10
8秒前
8秒前
shrike发布了新的文献求助10
8秒前
心灵美半邪完成签到 ,获得积分10
10秒前
wanci应助星晴遇见花海采纳,获得10
10秒前
10秒前
MILL完成签到,获得积分20
10秒前
卡卡发布了新的文献求助10
10秒前
今后应助九城采纳,获得10
11秒前
11秒前
我是125应助凶狠的乐巧采纳,获得10
11秒前
11秒前
开心的火龙果完成签到,获得积分10
12秒前
科研通AI2S应助长夜变清早采纳,获得10
12秒前
su发布了新的文献求助10
12秒前
明理的访风完成签到,获得积分10
12秒前
小马哥完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794