荧光粉
材料科学
亮度
激光器
发光效率
光学
光电子学
蓝光激光器
复合数
微观结构
散射
复合材料
图层(电子)
二极管
物理
作者
Jian Xu,Lanjie Wang,Wen Gu,Zhi Jiang,Xinrong Chen,Baofu Hu,Baoli Du,Haipeng Ji,Carsten Dam‐Hansen,Ole Bjarlin Jensen
标识
DOI:10.1016/j.jeurceramsoc.2021.10.035
摘要
One major benefit of laser lighting is the possibility to achieve very high luminance. In phosphor-converted laser lighting systems, a blue (pump) laser can be focused into a very small spot. However, after excitation of the phosphor, the white-light-emitting area usually increases considerably, which reduces the luminance parameter substantially. Herein, we design and investigate a highly scattering YAG:Ce/glass composite film with a porous microstructure. Both the glass/phosphor interfaces and the introduced pores act as scattering centers, which can confine the emission area effectively. The relationship between the spot size and the microstructure (porosity, phosphor-particle size, thickness) is elucidated. Under excitation with blue laser, the composite film shows a uniform white-light emission with high luminous efficacy (230 lm/W) and high saturation threshold (> 40 W/mm2), thus achieving a high luminous exitance of ∼1239 lm/mm2. With above excellent properties, the designed composite films show great potential for use in high-luminance laser lighting.
科研通智能强力驱动
Strongly Powered by AbleSci AI