Partial Hadamard Encoded Synthetic Transmit Aperture for High Frame Rate Imaging with Minimal l2-Norm Least Square Method.

算法 哈达玛变换 计算机科学 压缩传感 成像体模 迭代重建 阿达玛矩阵 规范(哲学) 信噪比(成像) 数学 计算机视觉 光学 物理 电信 数学分析 政治学 法学
作者
Jingke Zhang,Jing Liu,Wei Fan,Weibao Qiu,Jianwen Luo
出处
期刊:Cornell University - arXiv
摘要

Synthetic transmit aperture (STA) ultrasound imaging is well known for ideal focusing in the full field of view. However, it suffers from low signal-to-noise ratio (SNR) and low frame rate, because each array element must be activated individually. In our previous study, we encoded all the array elements with partial Hadamard matrix and reconstructed the complete STA dataset with compressed sensing (CS) algorithm (CS-STA). As all the elements are activated in each transmission and the number of transmissions is smaller than that of STA, this method can achieve higher SNR and higher frame rate. Its main drawback is the time-consuming CS reconstruction. In this study, we accelerate the complete STA dataset reconstruction with minimal l2-norm least square method. Thanks of the orthogonality of partial Hadamard matrix, the minimal l2-norm least square solution can be easily calculated. The proposed method is tested with simulation data and experimental phantom and in-vivo data. The results demonstrate that the proposed method achieves ~5*10^3 times faster reconstruction speed than CS algorithm. The simulation results demonstrate that the proposed method is capable of achieving the same accuracy for STA dataset reconstruction as conventional CS-STA method. The simulations, phantom and in-vivo experiments show that the proposed method is capable of improving the generalized contrast-to-noise ratio (gCNR) and SNR with maintained spatial resolution and fewer transmissions, compared with STA. In conclusion, the improved image quality and reduced computational time of LS-STA pave the way for its real-time applications in the clinics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王w发布了新的文献求助10
刚刚
壮观梦之完成签到,获得积分10
1秒前
1秒前
1秒前
拉不不发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
QJL完成签到,获得积分10
2秒前
nannan完成签到 ,获得积分10
2秒前
2秒前
赵保钢完成签到,获得积分10
2秒前
A29964095完成签到 ,获得积分10
2秒前
ZH完成签到 ,获得积分10
2秒前
3秒前
留猪完成签到,获得积分10
3秒前
Owen应助蓝莓采纳,获得10
4秒前
lily发布了新的文献求助10
5秒前
ikun0000完成签到,获得积分10
5秒前
5秒前
6秒前
yulou2199完成签到,获得积分10
6秒前
belssingoo发布了新的文献求助30
6秒前
zcz发布了新的文献求助10
6秒前
doudou完成签到,获得积分10
6秒前
Ratel完成签到,获得积分10
6秒前
6秒前
Doreen完成签到,获得积分10
7秒前
7秒前
DRXXX发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
mengwensi完成签到,获得积分10
9秒前
Vintoe完成签到 ,获得积分10
9秒前
wanci应助难过云朵采纳,获得10
10秒前
10秒前
日月完成签到,获得积分10
10秒前
宝玉完成签到 ,获得积分10
10秒前
伶俐摩托发布了新的文献求助10
11秒前
12秒前
12秒前
LL完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773617
求助须知:如何正确求助?哪些是违规求助? 5612760
关于积分的说明 15431930
捐赠科研通 4906024
什么是DOI,文献DOI怎么找? 2640036
邀请新用户注册赠送积分活动 1587869
关于科研通互助平台的介绍 1542957