Intensification of spray drying granulation process by gas absorption accompanied by chemical dissociation reactions

泥浆 解吸 传质 化学 离解(化学) 化学工程 吸收(声学) 湿度 分析化学(期刊) 热力学 材料科学 色谱法 吸附 有机化学 复合材料 工程类 物理
作者
Yehonatan David Pour,Boris Krasovitov,A. Fominykh,Ziba Hashemloo,Abdolreza Kharaghani,Evangelos Tsotsas,Avi Levy
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:433: 133566-133566 被引量:5
标识
DOI:10.1016/j.cej.2021.133566
摘要

In the present study, we developed a transient model for the drying of a single slurry droplet moving in a multicomponent gaseous mixture containing a soluble gas. The comprehensive model accounts for the effects of the soluble gas absorption/desorption, filtration, and compressibility of the gas–vapor mixture inside the porous crust on the intensity of the drying of the slurry droplet. The model is based on an application of the theory of heat and mass transfer during slurry droplet evaporation, in conjunction with a model for gas absorption/desorption as accompanied by a chemical dissociation reaction. It is shown that the presence of the active gas increases the evaporation rate during the entire drying process. As shown by numerical calculations, in a gas mixture containing air and ammonia with an ammonia mass fraction of 0.2, at a temperature of 293 K and humidity of 50%, the drying time of silica-aqueous slurry droplets with a radius of 250μm is approximately 35% shorter than that in a gas mixture not containing an active gas. We also found that at the second stage of a slurry droplet drying, the desorption of the dissolved gas from wet core decreases the temperature of the porous shell and reduces the mechanical stresses inside it that prevent the destruction of porous granules. The computational results obtained using the developed model are validated based on a good agreement with the available experimental data. Accordingly, the suggested model can be considered as a basis for alternative drying technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑砖头完成签到,获得积分10
1秒前
2秒前
2秒前
花玥鹿完成签到,获得积分10
2秒前
cybbbbbb完成签到,获得积分10
2秒前
咳咳完成签到,获得积分10
2秒前
3秒前
SciGPT应助眼睛大的鑫磊采纳,获得10
3秒前
3秒前
Fareth完成签到,获得积分10
3秒前
领导范儿应助故意的绿竹采纳,获得10
3秒前
3秒前
复杂谷蓝完成签到 ,获得积分10
3秒前
4秒前
迟大猫应助于某人采纳,获得10
4秒前
qingkong发布了新的文献求助10
5秒前
5秒前
5秒前
细腻白柏完成签到,获得积分10
5秒前
5秒前
麦满分完成签到,获得积分10
6秒前
长度2到发布了新的文献求助10
6秒前
Alicia完成签到,获得积分10
7秒前
西瓜大虫完成签到,获得积分10
7秒前
害羞聋五发布了新的文献求助10
8秒前
prosperp完成签到,获得积分0
8秒前
Hongsong完成签到,获得积分20
8秒前
prosperp应助背侧丘脑采纳,获得10
9秒前
好好发布了新的文献求助10
9秒前
gaos发布了新的文献求助10
9秒前
einuo发布了新的文献求助10
10秒前
001完成签到,获得积分20
10秒前
李健应助阔达萧采纳,获得10
10秒前
陆离发布了新的文献求助10
10秒前
11秒前
66应助雪白红紫采纳,获得10
11秒前
英俊的铭应助东郭南松采纳,获得10
11秒前
YANG完成签到 ,获得积分10
12秒前
冷酷哈密瓜完成签到,获得积分10
13秒前
岁月流年完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678