Aerosol Optical Depth Retrieval Over South Asia Using FY-4A/AGRI Data

航空网 气溶胶 均方误差 遥感 环境科学 中分辨率成像光谱仪 卫星 大气校正 深蓝色 气象学 算法 数学 统计 地理 物理 化学 光化学 天文
作者
Yanqing Xie,Zhengqiang Li,Jie Guang,Weizhen Hou,Abdus Salam,Zahir Ali,Fang Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:14
标识
DOI:10.1109/tgrs.2021.3124421
摘要

The Advanced Geosynchronous Radiation Imager (AGRI) is one of the main imaging sensors onboard the Fengyun-4A (FY-4A) satellite. Because of its high observation frequency, AGRI is suitable for continuous monitoring of atmospheric aerosols. In this study, we propose an aerosol optical depth (AOD) retrieval algorithm called the multichannel (MC) algorithm, which uses four channels (0.65, 0.83, 1.61, and $2.25~\mu \text{m}$ ) of AGRI. The algorithm assumes that the ratios between surface reflectance of different channels remain unchanged within two weeks, and the ratios are calculated by using Moderate-Resolution Imaging Spectroradiometer (MODIS)-combined AOD data to perform atmospheric correction on AGRI data under low pollution conditions (AOD at 550 nm less than 0.5). Since this algorithm is not developed for specific surface types, AOD retrieval can be achieved over both dark targets and bright surfaces. This algorithm has been applied to aerosol retrieval in South Asia. The accuracy assessment of the AGRI AOD dataset in 2019 and 2020 using the ground-based data from 11 aerosol robotic network (AERONET) sites shows that the AGRI AOD dataset has a high accuracy, and the statistical parameters of AGRI AOD dataset are slightly better than those of MODIS-combined AOD dataset. The root-mean-square error (RMSE), mean absolute error (MAE), relative mean bias (RMB), and percentage of data with errors within the expected error $\pm (0.05+0.15 \times {{\text {AOD}}}_{{\text {AERONET}}})$ (EE15) of AGRI AOD dataset are 0.16, 0.12, 0.23, and 63.71%, respectively. The RMSE, MAE, RMB, and EE15 of MODIS-combined AOD dataset are 0.18, 0.13, 0.24, and 61.06%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
糖糖完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
1秒前
Akim应助暖部采纳,获得10
1秒前
鲤鱼发布了新的文献求助10
1秒前
凶狠的zzx发布了新的文献求助30
2秒前
kkk407完成签到 ,获得积分10
3秒前
NexusExplorer应助调皮老头采纳,获得10
3秒前
大斌发布了新的文献求助10
4秒前
4秒前
Akim应助寂寞的小乌龟采纳,获得10
4秒前
研友_Y59785发布了新的文献求助30
5秒前
钱先生发布了新的文献求助10
5秒前
慕青应助张12采纳,获得10
5秒前
LZhao01发布了新的文献求助10
6秒前
韩宝贝发布了新的文献求助60
6秒前
6秒前
6秒前
7秒前
Ww完成签到,获得积分20
7秒前
7秒前
北辰发布了新的文献求助10
7秒前
7秒前
田様应助成就的白薇采纳,获得10
7秒前
乐乐应助刻苦的晓蕾采纳,获得10
8秒前
gyyyy发布了新的文献求助10
8秒前
斯文雪青完成签到,获得积分10
8秒前
丘比特应助huang采纳,获得10
9秒前
无花果应助LZhao01采纳,获得10
9秒前
欢呼紫菜完成签到,获得积分10
10秒前
感动尔柳发布了新的文献求助10
10秒前
酷波er应助自信鑫鹏采纳,获得10
10秒前
ding应助xol采纳,获得10
10秒前
10秒前
香蕉觅云应助psycan采纳,获得10
10秒前
10秒前
zengyan完成签到 ,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Nanostructured Titanium Dioxide Materials 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469346
求助须知:如何正确求助?哪些是违规求助? 3062465
关于积分的说明 9079074
捐赠科研通 2752760
什么是DOI,文献DOI怎么找? 1510621
科研通“疑难数据库(出版商)”最低求助积分说明 697925
邀请新用户注册赠送积分活动 697866