Unsupervised Learning-Based CBCT-CT Deformable Image Registration for CBCT-Guided Abdominal Radiotherapy

人工智能 图像配准 特征(语言学) 相似性(几何) 霍恩斯菲尔德秤 医学 计算机视觉 锥束ct 插值(计算机图形学) 计算机科学 模式识别(心理学) 图像(数学) 计算机断层摄影术 放射科 哲学 语言学
作者
Xiaofeng Yang,Yabo Fu,Yang Lei,T. Wang,Jacob Wynne,Justin Roper,Zengshan Tian,Anees Dhabaan,Ji Lin,Pretesh Patel,Jeffrey D. Bradley,Jun Zhou,T. Liu
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:111 (3): e535-e536 被引量:1
标识
DOI:10.1016/j.ijrobp.2021.07.1459
摘要

Daily Cone beam CT (CBCT) imaging provides necessary anatomical information for accurate patient setup. Image quality of CBCT is usually far inferior to simulation CT scans. A workaround is to register the CT to the CBCT such that the contours and Hounsfield Unit (HU) values of the CT can be propagated to the CBCT. However, the inconsistent HU values across CT and CBCT make it less effective to use conventional image similarity measures. We aim to develop an unsupervised registration network to overcome this challenge in multimodal CT-CBCT image registration.We propose to integrate directional local structural similarity into an unsupervised learning framework to perform abdominal CT-CBCT image registration. Directional local structural similarity measures the image's self-similarity which reflects the underlying structural similarity regardless of the modality in use. The CBCT and CT images were separately processed to extract directional local structural similarity feature maps in different directions. We concatenated the directional local structural similarity feature maps and the original images as network input. Taking both the original images and their respective structural similarity feature maps as input allows the network to fully explore the potential correlations between CBCT and CT for accurate deformation vector field (DVF) prediction. Salient features learnt through previous iterations were highlighted by attention gates across layers to expedite the learning process. A 3D bicubic interpolation was used to up-sample and smooth the predicted DVF. We performed a leave-one-out cross validation with an image dataset of 45 patients to evaluate the proposed registration method. Normalized cross correlation (NCC) and target registration error (TRE) between CBCT and deformed CT were calculated to quantify the registration accuracy.Our results show that the alignment between the abdominal soft tissues has been greatly improved after registration for all patients. The mean and standard deviation of NCC and TRE were 0.97 (range 0.95-0.99) and 1.88 (range 1.03-2.67) mm. The proposed network allows for many datasets to be used as training datasets since ground truth DVF is not needed for the training process. The proposed network can predict a final DVF via a single forward prediction, which is faster than the conventional iterative registration algorithms.We have developed a novel unsupervised multimodal image registration method for CT-CBCT abdominal image registration, which does not need ground truth DVF for training, and demonstrated its feasibility. Taking both CBCT and CT images and their respective directional local structural similarity features as input, the proposed network performs direct DVF prediction to register the abdominal CT to CBCT images. This tool will be useful for future CBCT-guided radiotherapy of abdominal malignancies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heye完成签到,获得积分20
刚刚
鱼鱼鱼完成签到,获得积分10
刚刚
憨憨发布了新的文献求助10
刚刚
Mimi发布了新的文献求助10
刚刚
1秒前
核桃发布了新的文献求助10
1秒前
2秒前
2秒前
饲养员发布了新的文献求助10
2秒前
3秒前
3秒前
水水应助天蓝日月潭采纳,获得20
3秒前
今后应助Wangjj采纳,获得30
3秒前
luo完成签到,获得积分10
4秒前
莫咏怡发布了新的文献求助10
5秒前
乐乐应助Corn_Dog采纳,获得10
5秒前
鱼鱼鱼发布了新的文献求助10
5秒前
隐形曼青应助网上飞采纳,获得10
5秒前
5秒前
科研通AI6应助kjwu采纳,获得10
5秒前
GLZ6984发布了新的文献求助10
6秒前
sda发布了新的文献求助10
7秒前
laryc完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
Ksharp10完成签到,获得积分10
8秒前
大野发布了新的文献求助10
9秒前
9秒前
9秒前
sda完成签到,获得积分10
9秒前
明理如凡完成签到,获得积分10
10秒前
科研通AI6应助Double采纳,获得10
11秒前
pokexuejiao完成签到,获得积分10
11秒前
李雅欣发布了新的文献求助10
11秒前
完美世界应助分隔符采纳,获得10
11秒前
Fernweh完成签到,获得积分20
12秒前
shouying发布了新的文献求助10
12秒前
夜染完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728