Unsupervised Learning-Based CBCT-CT Deformable Image Registration for CBCT-Guided Abdominal Radiotherapy

人工智能 图像配准 特征(语言学) 相似性(几何) 霍恩斯菲尔德秤 医学 计算机视觉 锥束ct 插值(计算机图形学) 计算机科学 模式识别(心理学) 图像(数学) 计算机断层摄影术 放射科 语言学 哲学
作者
Xiaofeng Yang,Yabo Fu,Yang Lei,T. Wang,Jacob Wynne,Justin Roper,Zengshan Tian,Anees Dhabaan,Ji Lin,Pretesh Patel,Jeffrey D. Bradley,Jun Zhou,T. Liu
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:111 (3): e535-e536 被引量:1
标识
DOI:10.1016/j.ijrobp.2021.07.1459
摘要

Daily Cone beam CT (CBCT) imaging provides necessary anatomical information for accurate patient setup. Image quality of CBCT is usually far inferior to simulation CT scans. A workaround is to register the CT to the CBCT such that the contours and Hounsfield Unit (HU) values of the CT can be propagated to the CBCT. However, the inconsistent HU values across CT and CBCT make it less effective to use conventional image similarity measures. We aim to develop an unsupervised registration network to overcome this challenge in multimodal CT-CBCT image registration.We propose to integrate directional local structural similarity into an unsupervised learning framework to perform abdominal CT-CBCT image registration. Directional local structural similarity measures the image's self-similarity which reflects the underlying structural similarity regardless of the modality in use. The CBCT and CT images were separately processed to extract directional local structural similarity feature maps in different directions. We concatenated the directional local structural similarity feature maps and the original images as network input. Taking both the original images and their respective structural similarity feature maps as input allows the network to fully explore the potential correlations between CBCT and CT for accurate deformation vector field (DVF) prediction. Salient features learnt through previous iterations were highlighted by attention gates across layers to expedite the learning process. A 3D bicubic interpolation was used to up-sample and smooth the predicted DVF. We performed a leave-one-out cross validation with an image dataset of 45 patients to evaluate the proposed registration method. Normalized cross correlation (NCC) and target registration error (TRE) between CBCT and deformed CT were calculated to quantify the registration accuracy.Our results show that the alignment between the abdominal soft tissues has been greatly improved after registration for all patients. The mean and standard deviation of NCC and TRE were 0.97 (range 0.95-0.99) and 1.88 (range 1.03-2.67) mm. The proposed network allows for many datasets to be used as training datasets since ground truth DVF is not needed for the training process. The proposed network can predict a final DVF via a single forward prediction, which is faster than the conventional iterative registration algorithms.We have developed a novel unsupervised multimodal image registration method for CT-CBCT abdominal image registration, which does not need ground truth DVF for training, and demonstrated its feasibility. Taking both CBCT and CT images and their respective directional local structural similarity features as input, the proposed network performs direct DVF prediction to register the abdominal CT to CBCT images. This tool will be useful for future CBCT-guided radiotherapy of abdominal malignancies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lbc发布了新的文献求助10
1秒前
牛逼man完成签到,获得积分10
1秒前
1秒前
传奇3应助lili采纳,获得10
1秒前
ZhangDaying完成签到 ,获得积分10
1秒前
Liu完成签到 ,获得积分10
2秒前
2秒前
RY文献下载完成签到,获得积分10
3秒前
Owen应助慕课魔芋采纳,获得10
4秒前
呜呜呜发布了新的文献求助10
4秒前
ZSmile给ZSmile的求助进行了留言
5秒前
愉快彩虹完成签到,获得积分10
5秒前
学术暴君完成签到,获得积分10
5秒前
xixixi发布了新的文献求助10
5秒前
xslj发布了新的文献求助10
5秒前
漂彭发布了新的文献求助10
5秒前
鸭鸭要学习鸭完成签到,获得积分10
6秒前
Zr完成签到,获得积分10
6秒前
7秒前
7秒前
大气早晨完成签到,获得积分10
7秒前
青蛙呱呱完成签到 ,获得积分10
8秒前
lbc完成签到,获得积分10
9秒前
彭于晏应助范范采纳,获得10
9秒前
CodeCraft应助鸭鸭要学习鸭采纳,获得10
10秒前
科研通AI2S应助zhangzhang采纳,获得10
10秒前
11秒前
11秒前
MiSD发布了新的文献求助10
11秒前
Ting完成签到 ,获得积分10
11秒前
xixixi完成签到,获得积分10
12秒前
yaolei发布了新的文献求助10
12秒前
13秒前
搜集达人应助Bioc采纳,获得10
13秒前
13秒前
Sissi完成签到 ,获得积分10
14秒前
爆米花应助549sysfzr采纳,获得10
14秒前
沈彬彬发布了新的文献求助20
15秒前
wr完成签到,获得积分20
15秒前
任梓宁发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159180
求助须知:如何正确求助?哪些是违规求助? 2810321
关于积分的说明 7887314
捐赠科研通 2469183
什么是DOI,文献DOI怎么找? 1314687
科研通“疑难数据库(出版商)”最低求助积分说明 630682
版权声明 602012