Unsupervised Learning-Based CBCT-CT Deformable Image Registration for CBCT-Guided Abdominal Radiotherapy

人工智能 图像配准 特征(语言学) 相似性(几何) 霍恩斯菲尔德秤 医学 计算机视觉 锥束ct 插值(计算机图形学) 计算机科学 模式识别(心理学) 图像(数学) 计算机断层摄影术 放射科 哲学 语言学
作者
Xiaofeng Yang,Yabo Fu,Yang Lei,T. Wang,Jacob Wynne,Justin Roper,Zengshan Tian,Anees Dhabaan,Ji Lin,Pretesh Patel,Jeffrey D. Bradley,Jun Zhou,T. Liu
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:111 (3): e535-e536 被引量:1
标识
DOI:10.1016/j.ijrobp.2021.07.1459
摘要

Daily Cone beam CT (CBCT) imaging provides necessary anatomical information for accurate patient setup. Image quality of CBCT is usually far inferior to simulation CT scans. A workaround is to register the CT to the CBCT such that the contours and Hounsfield Unit (HU) values of the CT can be propagated to the CBCT. However, the inconsistent HU values across CT and CBCT make it less effective to use conventional image similarity measures. We aim to develop an unsupervised registration network to overcome this challenge in multimodal CT-CBCT image registration.We propose to integrate directional local structural similarity into an unsupervised learning framework to perform abdominal CT-CBCT image registration. Directional local structural similarity measures the image's self-similarity which reflects the underlying structural similarity regardless of the modality in use. The CBCT and CT images were separately processed to extract directional local structural similarity feature maps in different directions. We concatenated the directional local structural similarity feature maps and the original images as network input. Taking both the original images and their respective structural similarity feature maps as input allows the network to fully explore the potential correlations between CBCT and CT for accurate deformation vector field (DVF) prediction. Salient features learnt through previous iterations were highlighted by attention gates across layers to expedite the learning process. A 3D bicubic interpolation was used to up-sample and smooth the predicted DVF. We performed a leave-one-out cross validation with an image dataset of 45 patients to evaluate the proposed registration method. Normalized cross correlation (NCC) and target registration error (TRE) between CBCT and deformed CT were calculated to quantify the registration accuracy.Our results show that the alignment between the abdominal soft tissues has been greatly improved after registration for all patients. The mean and standard deviation of NCC and TRE were 0.97 (range 0.95-0.99) and 1.88 (range 1.03-2.67) mm. The proposed network allows for many datasets to be used as training datasets since ground truth DVF is not needed for the training process. The proposed network can predict a final DVF via a single forward prediction, which is faster than the conventional iterative registration algorithms.We have developed a novel unsupervised multimodal image registration method for CT-CBCT abdominal image registration, which does not need ground truth DVF for training, and demonstrated its feasibility. Taking both CBCT and CT images and their respective directional local structural similarity features as input, the proposed network performs direct DVF prediction to register the abdominal CT to CBCT images. This tool will be useful for future CBCT-guided radiotherapy of abdominal malignancies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
晴天完成签到,获得积分10
刚刚
坦率无剑完成签到,获得积分10
刚刚
1秒前
2秒前
HuangYu关注了科研通微信公众号
3秒前
firefly完成签到 ,获得积分10
3秒前
gjx完成签到 ,获得积分10
3秒前
yangshuai发布了新的文献求助10
5秒前
晴天发布了新的文献求助10
6秒前
carbonhan完成签到,获得积分10
8秒前
无极微光应助eden采纳,获得20
10秒前
KKK完成签到,获得积分20
10秒前
ming完成签到,获得积分10
11秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
Lny应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
pluto应助科研通管家采纳,获得10
13秒前
Lny应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
pluto应助科研通管家采纳,获得10
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
Lny应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
HOAN应助科研通管家采纳,获得30
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978