亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Learning-Based CBCT-CT Deformable Image Registration for CBCT-Guided Abdominal Radiotherapy

人工智能 图像配准 特征(语言学) 相似性(几何) 霍恩斯菲尔德秤 医学 计算机视觉 锥束ct 插值(计算机图形学) 计算机科学 模式识别(心理学) 图像(数学) 计算机断层摄影术 放射科 哲学 语言学
作者
Xiaofeng Yang,Yabo Fu,Yang Lei,T. Wang,Jacob Wynne,Justin Roper,Zengshan Tian,Anees Dhabaan,Ji Lin,Pretesh Patel,Jeffrey D. Bradley,Jun Zhou,T. Liu
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:111 (3): e535-e536 被引量:1
标识
DOI:10.1016/j.ijrobp.2021.07.1459
摘要

Daily Cone beam CT (CBCT) imaging provides necessary anatomical information for accurate patient setup. Image quality of CBCT is usually far inferior to simulation CT scans. A workaround is to register the CT to the CBCT such that the contours and Hounsfield Unit (HU) values of the CT can be propagated to the CBCT. However, the inconsistent HU values across CT and CBCT make it less effective to use conventional image similarity measures. We aim to develop an unsupervised registration network to overcome this challenge in multimodal CT-CBCT image registration.We propose to integrate directional local structural similarity into an unsupervised learning framework to perform abdominal CT-CBCT image registration. Directional local structural similarity measures the image's self-similarity which reflects the underlying structural similarity regardless of the modality in use. The CBCT and CT images were separately processed to extract directional local structural similarity feature maps in different directions. We concatenated the directional local structural similarity feature maps and the original images as network input. Taking both the original images and their respective structural similarity feature maps as input allows the network to fully explore the potential correlations between CBCT and CT for accurate deformation vector field (DVF) prediction. Salient features learnt through previous iterations were highlighted by attention gates across layers to expedite the learning process. A 3D bicubic interpolation was used to up-sample and smooth the predicted DVF. We performed a leave-one-out cross validation with an image dataset of 45 patients to evaluate the proposed registration method. Normalized cross correlation (NCC) and target registration error (TRE) between CBCT and deformed CT were calculated to quantify the registration accuracy.Our results show that the alignment between the abdominal soft tissues has been greatly improved after registration for all patients. The mean and standard deviation of NCC and TRE were 0.97 (range 0.95-0.99) and 1.88 (range 1.03-2.67) mm. The proposed network allows for many datasets to be used as training datasets since ground truth DVF is not needed for the training process. The proposed network can predict a final DVF via a single forward prediction, which is faster than the conventional iterative registration algorithms.We have developed a novel unsupervised multimodal image registration method for CT-CBCT abdominal image registration, which does not need ground truth DVF for training, and demonstrated its feasibility. Taking both CBCT and CT images and their respective directional local structural similarity features as input, the proposed network performs direct DVF prediction to register the abdominal CT to CBCT images. This tool will be useful for future CBCT-guided radiotherapy of abdominal malignancies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助科研通管家采纳,获得10
10秒前
10秒前
Aimee完成签到,获得积分10
12秒前
38秒前
李某发布了新的文献求助10
43秒前
852应助调皮芫采纳,获得10
45秒前
脑洞疼应助紫津采纳,获得10
46秒前
47秒前
57秒前
紫津发布了新的文献求助10
1分钟前
Panther完成签到,获得积分10
1分钟前
紫津完成签到,获得积分10
1分钟前
1分钟前
1分钟前
调皮芫发布了新的文献求助10
1分钟前
萝卜猪完成签到,获得积分10
1分钟前
1分钟前
1分钟前
万能图书馆应助调皮芫采纳,获得10
1分钟前
Owen应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
调皮芫发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Ava应助Yanz采纳,获得10
3分钟前
pegasus0802完成签到,获得积分10
3分钟前
4分钟前
Yanz发布了新的文献求助10
4分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
奈思完成签到 ,获得积分10
4分钟前
Yanz完成签到,获得积分10
4分钟前
4分钟前
来活发布了新的文献求助10
4分钟前
4分钟前
YOGA1115发布了新的文献求助10
4分钟前
4分钟前
来活完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078209
求助须知:如何正确求助?哪些是违规求助? 4297037
关于积分的说明 13387745
捐赠科研通 4119669
什么是DOI,文献DOI怎么找? 2256149
邀请新用户注册赠送积分活动 1260461
关于科研通互助平台的介绍 1194019