Unsupervised Learning-Based CBCT-CT Deformable Image Registration for CBCT-Guided Abdominal Radiotherapy

人工智能 图像配准 特征(语言学) 相似性(几何) 霍恩斯菲尔德秤 医学 计算机视觉 锥束ct 插值(计算机图形学) 计算机科学 模式识别(心理学) 图像(数学) 计算机断层摄影术 放射科 哲学 语言学
作者
Xiaofeng Yang,Yabo Fu,Yang Lei,T. Wang,Jacob Wynne,Justin Roper,Zengshan Tian,Anees Dhabaan,Ji Lin,Pretesh Patel,Jeffrey D. Bradley,Jun Zhou,T. Liu
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:111 (3): e535-e536 被引量:1
标识
DOI:10.1016/j.ijrobp.2021.07.1459
摘要

Daily Cone beam CT (CBCT) imaging provides necessary anatomical information for accurate patient setup. Image quality of CBCT is usually far inferior to simulation CT scans. A workaround is to register the CT to the CBCT such that the contours and Hounsfield Unit (HU) values of the CT can be propagated to the CBCT. However, the inconsistent HU values across CT and CBCT make it less effective to use conventional image similarity measures. We aim to develop an unsupervised registration network to overcome this challenge in multimodal CT-CBCT image registration.We propose to integrate directional local structural similarity into an unsupervised learning framework to perform abdominal CT-CBCT image registration. Directional local structural similarity measures the image's self-similarity which reflects the underlying structural similarity regardless of the modality in use. The CBCT and CT images were separately processed to extract directional local structural similarity feature maps in different directions. We concatenated the directional local structural similarity feature maps and the original images as network input. Taking both the original images and their respective structural similarity feature maps as input allows the network to fully explore the potential correlations between CBCT and CT for accurate deformation vector field (DVF) prediction. Salient features learnt through previous iterations were highlighted by attention gates across layers to expedite the learning process. A 3D bicubic interpolation was used to up-sample and smooth the predicted DVF. We performed a leave-one-out cross validation with an image dataset of 45 patients to evaluate the proposed registration method. Normalized cross correlation (NCC) and target registration error (TRE) between CBCT and deformed CT were calculated to quantify the registration accuracy.Our results show that the alignment between the abdominal soft tissues has been greatly improved after registration for all patients. The mean and standard deviation of NCC and TRE were 0.97 (range 0.95-0.99) and 1.88 (range 1.03-2.67) mm. The proposed network allows for many datasets to be used as training datasets since ground truth DVF is not needed for the training process. The proposed network can predict a final DVF via a single forward prediction, which is faster than the conventional iterative registration algorithms.We have developed a novel unsupervised multimodal image registration method for CT-CBCT abdominal image registration, which does not need ground truth DVF for training, and demonstrated its feasibility. Taking both CBCT and CT images and their respective directional local structural similarity features as input, the proposed network performs direct DVF prediction to register the abdominal CT to CBCT images. This tool will be useful for future CBCT-guided radiotherapy of abdominal malignancies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ket完成签到,获得积分10
1秒前
ao发布了新的文献求助10
1秒前
独特南霜发布了新的文献求助10
2秒前
不厌发布了新的文献求助10
2秒前
3秒前
芸沐发布了新的文献求助10
3秒前
小马甲应助称心的妖妖采纳,获得10
3秒前
李健的粉丝团团长应助bey采纳,获得10
4秒前
善学以致用应助mogic采纳,获得30
4秒前
不安若颜发布了新的文献求助10
6秒前
心灵美的大山完成签到,获得积分10
6秒前
请你加倍努力完成签到,获得积分10
7秒前
天天快乐应助Yvonne采纳,获得10
7秒前
8秒前
吕小软完成签到,获得积分10
8秒前
土豪的荟完成签到,获得积分10
8秒前
炸虾仁发布了新的文献求助10
9秒前
华仔应助caixiayin采纳,获得10
10秒前
大模型应助taki采纳,获得10
10秒前
星辰大海应助rengar采纳,获得10
10秒前
ZZZZZ完成签到,获得积分10
10秒前
青寻完成签到,获得积分10
11秒前
不安豁完成签到,获得积分10
11秒前
搞笑5次完成签到,获得积分10
12秒前
罗小琴发布了新的文献求助10
13秒前
不安若颜完成签到,获得积分10
15秒前
PikaQ应助科研小白采纳,获得10
15秒前
16秒前
光亮的如松完成签到,获得积分10
16秒前
佘同学完成签到,获得积分20
16秒前
孙福禄应助芸沐采纳,获得10
17秒前
17秒前
18秒前
18秒前
平常的狗完成签到,获得积分10
18秒前
大个应助大胆的睿渊采纳,获得10
19秒前
佘同学发布了新的文献求助10
19秒前
充电宝应助亚尔采纳,获得10
19秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650