亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pixel-based Raman hyperspectral identification of complex pharmaceutical formulations

高光谱成像 像素 光谱特征 化学成像 鉴定(生物学) 化学 端元 拉曼光谱 模式识别(心理学) 化学计量学 人工智能 生物系统 计算机科学 遥感 光学 色谱法 物理 地质学 生物 植物
作者
Laureen Coïc,Pierre-Yves Sacré,Amandine Dispas,Charlotte De Bleye,Marianne Fillet,Cyril Ruckebusch,Philippe Hubert,Éric Ziemons
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1155: 338361-338361 被引量:15
标识
DOI:10.1016/j.aca.2021.338361
摘要

Hyperspectral imaging has been widely used for different kinds of applications and many chemometric tools have been developed to help identifying chemical compounds. However, most of those tools rely on factorial decomposition techniques that can be challenging for large data sets and/or in the presence of minor compounds. The present study proposes a pixel-based identification (PBI) approach that allows readily identifying spectral signatures in Raman hyperspectral imaging data. This strategy is based on the identification of essential spectral pixels (ESP), which can be found by convex hull calculation. As the corresponding set of spectra is largely reduced and encompasses the purest spectral signatures, direct database matching and identification can be reliably and rapidly performed. The efficiency of PBI was evaluated on both known and unknown samples, considering genuine and falsified pharmaceutical tablets. We showed that it is possible to analyze a wide variety of pharmaceutical formulations of increasing complexity (from 5 to 0.1% (w/w) of polymorphic impurity detection) for medium (150 x 150 pixels) and big (1000 x 1000 pixels) map sizes in less than 2 min. Moreover, in the case of falsified medicines, it is demonstrated that the proposed approach allows the identification of all compounds, found in very different proportions and, sometimes, in trace amounts. Furthermore, the relevant spectral signatures for which no match is found in the reference database can be identified at a later stage and the nature of the corresponding compounds further investigated. Overall, the provided results show that Raman hyperspectral imaging combined with PBI enables rapid and reliable spectral identification of complex pharmaceutical formulations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
雷金炜发布了新的文献求助10
12秒前
Grace完成签到 ,获得积分10
17秒前
雷金炜完成签到,获得积分10
17秒前
科研通AI6应助科研通管家采纳,获得10
56秒前
科研通AI6应助科研通管家采纳,获得10
56秒前
科研通AI6应助科研通管家采纳,获得10
56秒前
科研通AI6应助科研通管家采纳,获得10
56秒前
斯文败类应助科研通管家采纳,获得10
57秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
57秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
桐桐应助白华苍松采纳,获得10
2分钟前
jiao完成签到,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
白华苍松完成签到,获得积分10
2分钟前
3分钟前
kiko发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
cheers发布了新的文献求助10
4分钟前
脑洞疼应助cheers采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
4分钟前
NexusExplorer应助李小猫采纳,获得10
5分钟前
李小猫完成签到,获得积分10
5分钟前
5分钟前
传奇3应助uo采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706456
求助须知:如何正确求助?哪些是违规求助? 5173834
关于积分的说明 15246926
捐赠科研通 4859958
什么是DOI,文献DOI怎么找? 2608291
邀请新用户注册赠送积分活动 1559198
关于科研通互助平台的介绍 1516964