Pixel-based Raman hyperspectral identification of complex pharmaceutical formulations

高光谱成像 像素 光谱特征 化学成像 鉴定(生物学) 化学 端元 拉曼光谱 模式识别(心理学) 化学计量学 人工智能 生物系统 计算机科学 遥感 光学 色谱法 物理 地质学 生物 植物
作者
Laureen Coïc,Pierre-Yves Sacré,Amandine Dispas,Charlotte De Bleye,Marianne Fillet,Cyril Ruckebusch,Philippe Hubert,Éric Ziemons
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1155: 338361-338361 被引量:15
标识
DOI:10.1016/j.aca.2021.338361
摘要

Hyperspectral imaging has been widely used for different kinds of applications and many chemometric tools have been developed to help identifying chemical compounds. However, most of those tools rely on factorial decomposition techniques that can be challenging for large data sets and/or in the presence of minor compounds. The present study proposes a pixel-based identification (PBI) approach that allows readily identifying spectral signatures in Raman hyperspectral imaging data. This strategy is based on the identification of essential spectral pixels (ESP), which can be found by convex hull calculation. As the corresponding set of spectra is largely reduced and encompasses the purest spectral signatures, direct database matching and identification can be reliably and rapidly performed. The efficiency of PBI was evaluated on both known and unknown samples, considering genuine and falsified pharmaceutical tablets. We showed that it is possible to analyze a wide variety of pharmaceutical formulations of increasing complexity (from 5 to 0.1% (w/w) of polymorphic impurity detection) for medium (150 x 150 pixels) and big (1000 x 1000 pixels) map sizes in less than 2 min. Moreover, in the case of falsified medicines, it is demonstrated that the proposed approach allows the identification of all compounds, found in very different proportions and, sometimes, in trace amounts. Furthermore, the relevant spectral signatures for which no match is found in the reference database can be identified at a later stage and the nature of the corresponding compounds further investigated. Overall, the provided results show that Raman hyperspectral imaging combined with PBI enables rapid and reliable spectral identification of complex pharmaceutical formulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
adobe完成签到,获得积分10
2秒前
4秒前
ting完成签到,获得积分10
7秒前
琉璃苣应助默默的安白采纳,获得10
7秒前
laoliu发布了新的文献求助10
8秒前
夏之完成签到,获得积分10
13秒前
酷波er应助怕孤独的可乐采纳,获得10
16秒前
细腻的歌曲完成签到,获得积分10
17秒前
稳重的若雁应助fuzhy采纳,获得10
17秒前
luckinstar完成签到,获得积分10
17秒前
18秒前
连牙蓝上了吗完成签到 ,获得积分10
20秒前
23秒前
优秀灵竹发布了新的文献求助10
23秒前
adam完成签到,获得积分10
23秒前
Clover04应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
mmlb发布了新的文献求助10
25秒前
诗与应助科研通管家采纳,获得30
25秒前
iNk应助科研通管家采纳,获得10
25秒前
麻薯头头发布了新的文献求助10
28秒前
衍灵之心完成签到,获得积分10
28秒前
31秒前
科研菜牙完成签到,获得积分10
31秒前
32秒前
34秒前
真实的枕头完成签到,获得积分10
36秒前
xx发布了新的文献求助10
37秒前
linuo完成签到,获得积分10
38秒前
陶醉觅夏发布了新的文献求助10
38秒前
39秒前
39秒前
元谷雪应助lucylee采纳,获得10
39秒前
黄少侠完成签到 ,获得积分10
39秒前
42秒前
42秒前
小蘑菇应助黎明在眼前了采纳,获得10
42秒前
malenia完成签到,获得积分10
44秒前
蓝胖子应助陶醉觅夏采纳,获得30
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137638
求助须知:如何正确求助?哪些是违规求助? 2788565
关于积分的说明 7787590
捐赠科研通 2444902
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023