Pixel-based Raman hyperspectral identification of complex pharmaceutical formulations

高光谱成像 像素 光谱特征 化学成像 鉴定(生物学) 化学 端元 拉曼光谱 模式识别(心理学) 化学计量学 人工智能 生物系统 计算机科学 遥感 光学 色谱法 物理 植物 生物 地质学
作者
Laureen Coïc,Pierre-Yves Sacré,Amandine Dispas,Charlotte De Bleye,Marianne Fillet,Cyril Ruckebusch,Philippe Hubert,Éric Ziemons
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1155: 338361-338361 被引量:15
标识
DOI:10.1016/j.aca.2021.338361
摘要

Hyperspectral imaging has been widely used for different kinds of applications and many chemometric tools have been developed to help identifying chemical compounds. However, most of those tools rely on factorial decomposition techniques that can be challenging for large data sets and/or in the presence of minor compounds. The present study proposes a pixel-based identification (PBI) approach that allows readily identifying spectral signatures in Raman hyperspectral imaging data. This strategy is based on the identification of essential spectral pixels (ESP), which can be found by convex hull calculation. As the corresponding set of spectra is largely reduced and encompasses the purest spectral signatures, direct database matching and identification can be reliably and rapidly performed. The efficiency of PBI was evaluated on both known and unknown samples, considering genuine and falsified pharmaceutical tablets. We showed that it is possible to analyze a wide variety of pharmaceutical formulations of increasing complexity (from 5 to 0.1% (w/w) of polymorphic impurity detection) for medium (150 x 150 pixels) and big (1000 x 1000 pixels) map sizes in less than 2 min. Moreover, in the case of falsified medicines, it is demonstrated that the proposed approach allows the identification of all compounds, found in very different proportions and, sometimes, in trace amounts. Furthermore, the relevant spectral signatures for which no match is found in the reference database can be identified at a later stage and the nature of the corresponding compounds further investigated. Overall, the provided results show that Raman hyperspectral imaging combined with PBI enables rapid and reliable spectral identification of complex pharmaceutical formulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
超帅的薇姐完成签到,获得积分10
1秒前
杜七七完成签到,获得积分10
1秒前
1秒前
shannonxiong完成签到 ,获得积分20
1秒前
whisper完成签到,获得积分10
1秒前
单纯完成签到,获得积分10
2秒前
RucyJin完成签到 ,获得积分10
2秒前
3秒前
cerelia发布了新的文献求助10
3秒前
3秒前
现代的访曼应助happiness采纳,获得20
3秒前
4秒前
花姐发布了新的文献求助10
4秒前
JamesPei应助开放雪碧采纳,获得10
4秒前
香蕉觅云应助雪碧要加冰采纳,获得10
4秒前
5秒前
XM完成签到,获得积分10
5秒前
5秒前
6秒前
guohuiting发布了新的文献求助20
6秒前
benny279完成签到,获得积分10
7秒前
刚刚好发布了新的文献求助10
7秒前
7秒前
7秒前
吃饭睡觉打豆豆完成签到,获得积分10
10秒前
斐然发布了新的文献求助50
10秒前
善学以致用应助小鱼采纳,获得10
10秒前
11秒前
奔波儿灞完成签到,获得积分10
11秒前
11秒前
cacaca发布了新的文献求助10
12秒前
13秒前
田様应助阿尔法贝塔采纳,获得10
14秒前
奔波儿灞发布了新的文献求助10
15秒前
Cruffin发布了新的文献求助10
15秒前
16秒前
共享精神应助chenjun7080采纳,获得10
16秒前
脑洞疼应助luo采纳,获得10
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958780
求助须知:如何正确求助?哪些是违规求助? 3504977
关于积分的说明 11121403
捐赠科研通 3236362
什么是DOI,文献DOI怎么找? 1788752
邀请新用户注册赠送积分活动 871360
科研通“疑难数据库(出版商)”最低求助积分说明 802707