Production of global daily seamless data cubes and quantification of global land cover change from 1985 to 2020 - iMap World 1.0

土地覆盖 遥感 计算机科学 云计算 星座 工作流程 数据库 云量 大数据 数据挖掘 环境科学 土地利用 地理 工程类 土木工程 物理 操作系统 天文
作者
Han Liu,Peng Gong,Jie Wang,Xi Wang,Grant Ning,Bing Xu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:258: 112364-112364 被引量:115
标识
DOI:10.1016/j.rse.2021.112364
摘要

Longer time high-resolution, high-frequency, consistent, and more detailed land cover data are urgently needed in order to achieve sustainable development goals on food security, high-quality habitat construction, biodiversity conservation and planetary health, and for the understanding, simulation and management of the Earth system. However, due to technological constraints, it is difficult to provide simultaneously high spatial resolution, high temporal frequency, and high quality observation data. Existing mapping solutions are limited by traditional remotely sensed data, that have shorter observation periods, poor spatio-temporal consistency and comparability. Therefore, a new mapping paradigm is needed. This paper develops a framework for intelligent mapping (iMap) of land cover based on state-of-the-art technologies such as cloud computing, artificial intelligence, virtual constellations, and spatio-temporal reconstruction and fusion. Under this framework, we built an automated, serverless, end-to-end data production chain and parallel mapping system based on Amazon Web Services (AWS) and produced the first 30 m global daily seamless data cubes (SDC), and annual to seasonal land cover maps for 1985–2020. The SDC was produced through a multi-source spatio-temporal data reconstruction and fusion workflow based on Landsat, MODIS, and AVHRR virtual constellations. Independent validation results show that the relative mean error of the SDC is less than 2.14%. As analysis ready data (ARD), it can lay a foundation for high-precision quantitative remote sensing information extraction. From this SDC, we produced 36-year long, 30 m resolution global land cover map data set by combining strategies of sample migration, machine learning, and spatio-temporal adjustment. The average overall accuracy of our annual land cover maps over multiple periods of time is 80% for level 1 classification and over 73% for level 2 classification (29 and 33 classes). Based on an objective validation sample consisting of FLUXNET sites, our map accuracy is 10% higher than that of existing global land cover datasets including Globeland30. Our results show that the average global land cover change rate is 0.36%/yr. Global forest decreased by 1.47 million km2 from 38.44 million km2, cropland increased by 0.84 million km2 from 12.49 million km2 and impervious surface increased by 0.48 million km2 from 0.57 million km2 during 1985– 2020.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lang发布了新的文献求助10
刚刚
NexusExplorer应助lllzzz236采纳,获得10
刚刚
香酥板栗完成签到,获得积分10
1秒前
眼睛大的从雪完成签到,获得积分10
2秒前
2秒前
Owen应助123采纳,获得10
4秒前
神勇松完成签到,获得积分10
5秒前
山長完成签到 ,获得积分10
6秒前
CipherSage应助不懂采纳,获得10
8秒前
酷波er应助科研小达人采纳,获得10
9秒前
10秒前
咖啡泡的幻想完成签到 ,获得积分10
10秒前
13秒前
15秒前
鱼鱼鱼完成签到,获得积分20
15秒前
17秒前
勤恳的磬发布了新的文献求助10
18秒前
时尚的煎蛋给时尚的煎蛋的求助进行了留言
18秒前
18秒前
19秒前
gyh完成签到,获得积分10
19秒前
ddddddd完成签到,获得积分10
21秒前
FelixFelicis发布了新的文献求助10
23秒前
gyh发布了新的文献求助10
23秒前
24秒前
26秒前
26秒前
清脆难胜应助ddak采纳,获得10
26秒前
26秒前
27秒前
ddddddd发布了新的文献求助10
27秒前
ccc发布了新的文献求助10
28秒前
29秒前
向日葵应助科研通管家采纳,获得10
29秒前
在水一方应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
深情安青应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
iNk应助科研通管家采纳,获得10
29秒前
无花果应助zhouleiwang采纳,获得10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136234
求助须知:如何正确求助?哪些是违规求助? 2787225
关于积分的说明 7780556
捐赠科研通 2443265
什么是DOI,文献DOI怎么找? 1298990
科研通“疑难数据库(出版商)”最低求助积分说明 625299
版权声明 600870