亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Production of global daily seamless data cubes and quantification of global land cover change from 1985 to 2020 - iMap World 1.0

土地覆盖 遥感 计算机科学 云计算 星座 工作流程 数据库 云量 大数据 数据挖掘 环境科学 土地利用 地理 工程类 土木工程 物理 操作系统 天文
作者
Han Liu,Peng Gong,Jie Wang,Xi Wang,Grant Ning,Bing Xu
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:258: 112364-112364 被引量:115
标识
DOI:10.1016/j.rse.2021.112364
摘要

Longer time high-resolution, high-frequency, consistent, and more detailed land cover data are urgently needed in order to achieve sustainable development goals on food security, high-quality habitat construction, biodiversity conservation and planetary health, and for the understanding, simulation and management of the Earth system. However, due to technological constraints, it is difficult to provide simultaneously high spatial resolution, high temporal frequency, and high quality observation data. Existing mapping solutions are limited by traditional remotely sensed data, that have shorter observation periods, poor spatio-temporal consistency and comparability. Therefore, a new mapping paradigm is needed. This paper develops a framework for intelligent mapping (iMap) of land cover based on state-of-the-art technologies such as cloud computing, artificial intelligence, virtual constellations, and spatio-temporal reconstruction and fusion. Under this framework, we built an automated, serverless, end-to-end data production chain and parallel mapping system based on Amazon Web Services (AWS) and produced the first 30 m global daily seamless data cubes (SDC), and annual to seasonal land cover maps for 1985–2020. The SDC was produced through a multi-source spatio-temporal data reconstruction and fusion workflow based on Landsat, MODIS, and AVHRR virtual constellations. Independent validation results show that the relative mean error of the SDC is less than 2.14%. As analysis ready data (ARD), it can lay a foundation for high-precision quantitative remote sensing information extraction. From this SDC, we produced 36-year long, 30 m resolution global land cover map data set by combining strategies of sample migration, machine learning, and spatio-temporal adjustment. The average overall accuracy of our annual land cover maps over multiple periods of time is 80% for level 1 classification and over 73% for level 2 classification (29 and 33 classes). Based on an objective validation sample consisting of FLUXNET sites, our map accuracy is 10% higher than that of existing global land cover datasets including Globeland30. Our results show that the average global land cover change rate is 0.36%/yr. Global forest decreased by 1.47 million km2 from 38.44 million km2, cropland increased by 0.84 million km2 from 12.49 million km2 and impervious surface increased by 0.48 million km2 from 0.57 million km2 during 1985– 2020.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
29秒前
30秒前
jarrykim发布了新的文献求助10
35秒前
大个应助啊呆哦采纳,获得10
48秒前
56秒前
啊呆哦完成签到,获得积分10
57秒前
在水一方应助sidneyyang采纳,获得10
58秒前
啊呆哦发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
吴南宛发布了新的文献求助10
2分钟前
sidneyyang完成签到,获得积分10
2分钟前
211JZH完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
直率的笑翠完成签到 ,获得积分10
3分钟前
sidneyyang发布了新的文献求助10
3分钟前
3分钟前
Ashao完成签到 ,获得积分10
3分钟前
3分钟前
Sym发布了新的文献求助10
3分钟前
3分钟前
繁觅完成签到,获得积分10
3分钟前
3分钟前
nini发布了新的文献求助10
3分钟前
Sym发布了新的文献求助10
4分钟前
4分钟前
火星完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889441
求助须知:如何正确求助?哪些是违规求助? 4173461
关于积分的说明 12952082
捐赠科研通 3934886
什么是DOI,文献DOI怎么找? 2159100
邀请新用户注册赠送积分活动 1177437
关于科研通互助平台的介绍 1082254