Production of global daily seamless data cubes and quantification of global land cover change from 1985 to 2020 - iMap World 1.0

土地覆盖 遥感 计算机科学 云计算 星座 工作流程 数据库 云量 大数据 数据挖掘 环境科学 土地利用 地理 工程类 土木工程 物理 操作系统 天文
作者
Han Liu,Peng Gong,Jie Wang,Xi Wang,Grant Ning,Bing Xu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:258: 112364-112364 被引量:115
标识
DOI:10.1016/j.rse.2021.112364
摘要

Longer time high-resolution, high-frequency, consistent, and more detailed land cover data are urgently needed in order to achieve sustainable development goals on food security, high-quality habitat construction, biodiversity conservation and planetary health, and for the understanding, simulation and management of the Earth system. However, due to technological constraints, it is difficult to provide simultaneously high spatial resolution, high temporal frequency, and high quality observation data. Existing mapping solutions are limited by traditional remotely sensed data, that have shorter observation periods, poor spatio-temporal consistency and comparability. Therefore, a new mapping paradigm is needed. This paper develops a framework for intelligent mapping (iMap) of land cover based on state-of-the-art technologies such as cloud computing, artificial intelligence, virtual constellations, and spatio-temporal reconstruction and fusion. Under this framework, we built an automated, serverless, end-to-end data production chain and parallel mapping system based on Amazon Web Services (AWS) and produced the first 30 m global daily seamless data cubes (SDC), and annual to seasonal land cover maps for 1985–2020. The SDC was produced through a multi-source spatio-temporal data reconstruction and fusion workflow based on Landsat, MODIS, and AVHRR virtual constellations. Independent validation results show that the relative mean error of the SDC is less than 2.14%. As analysis ready data (ARD), it can lay a foundation for high-precision quantitative remote sensing information extraction. From this SDC, we produced 36-year long, 30 m resolution global land cover map data set by combining strategies of sample migration, machine learning, and spatio-temporal adjustment. The average overall accuracy of our annual land cover maps over multiple periods of time is 80% for level 1 classification and over 73% for level 2 classification (29 and 33 classes). Based on an objective validation sample consisting of FLUXNET sites, our map accuracy is 10% higher than that of existing global land cover datasets including Globeland30. Our results show that the average global land cover change rate is 0.36%/yr. Global forest decreased by 1.47 million km2 from 38.44 million km2, cropland increased by 0.84 million km2 from 12.49 million km2 and impervious surface increased by 0.48 million km2 from 0.57 million km2 during 1985– 2020.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
健忘怜雪发布了新的文献求助10
4秒前
wym发布了新的文献求助10
5秒前
5秒前
XX发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
7秒前
高贵的若烟完成签到,获得积分10
8秒前
8秒前
9秒前
欢呼忆丹发布了新的文献求助10
10秒前
Dr.chen完成签到,获得积分10
10秒前
淡淡智宸发布了新的文献求助10
11秒前
深情安青应助lin采纳,获得10
12秒前
Dr.chen发布了新的文献求助10
13秒前
JamesPei应助wym采纳,获得10
13秒前
心心发布了新的文献求助10
14秒前
望山云雾发布了新的文献求助10
14秒前
15秒前
666应助whf采纳,获得10
16秒前
陈陈陈关注了科研通微信公众号
16秒前
充电宝应助热情的凡波采纳,获得10
17秒前
叼着奶瓶上天完成签到,获得积分10
17秒前
老肖发布了新的文献求助10
19秒前
海德堡发布了新的文献求助10
20秒前
donzang完成签到,获得积分10
20秒前
卡恩完成签到 ,获得积分0
21秒前
在水一方应助小美的大哥采纳,获得10
22秒前
呓语完成签到 ,获得积分10
22秒前
望山云雾完成签到,获得积分10
22秒前
长木发布了新的文献求助10
23秒前
大模型应助兜兜采纳,获得10
23秒前
润柏海完成签到 ,获得积分10
28秒前
老肖完成签到,获得积分10
29秒前
31秒前
33秒前
大胆诗云完成签到,获得积分10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5838357
求助须知:如何正确求助?哪些是违规求助? 6131760
关于积分的说明 15601065
捐赠科研通 4956509
什么是DOI,文献DOI怎么找? 2671654
邀请新用户注册赠送积分活动 1616831
关于科研通互助平台的介绍 1571949