亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using Acoustic Speech Patterns From Smartphones to Investigate Mood Disorders: Scoping Review

心情 健康 心理学 医学 心理干预 焦虑
作者
Olivia Flanagan,Amy Hai Yan Chan,Partha S. Roop,Frederick Sundram
出处
期刊:Jmir mhealth and uhealth [JMIR Publications Inc.]
卷期号:9 (9) 被引量:1
标识
DOI:10.2196/24352
摘要

Background: Mood disorders are commonly underrecognized and undertreated, as diagnosis is reliant on self-reporting and clinical assessments that are often not timely. Speech characteristics of those with mood disorders differs from healthy individuals. With the wide use of smartphones, and the emergence of machine learning approaches, smartphones can be used to monitor speech patterns to help the diagnosis and monitoring of mood disorders. Objective: The aim of this review is to synthesize research on using speech patterns from smartphones to diagnose and monitor mood disorders. Methods: Literature searches of major databases, Medline, PsycInfo, EMBASE, and CINAHL, initially identified 832 relevant articles using the search terms “mood disorders”, “smartphone”, “voice analysis”, and their variants. Only 13 studies met inclusion criteria: use of a smartphone for capturing voice data, focus on diagnosing or monitoring a mood disorder(s), clinical populations recruited prospectively, and in the English language only. Articles were assessed by 2 reviewers, and data extracted included data type, classifiers used, methods of capture, and study results. Studies were analyzed using a narrative synthesis approach. Results: Studies showed that voice data alone had reasonable accuracy in predicting mood states and mood fluctuations based on objectively monitored speech patterns. While a fusion of different sensor modalities revealed the highest accuracy (97.4%), nearly 80% of included studies were pilot trials or feasibility studies without control groups and had small sample sizes ranging from 1 to 73 participants. Studies were also carried out over short or varying timeframes and had significant heterogeneity of methods in terms of the types of audio data captured, environmental contexts, classifiers, and measures to control for privacy and ambient noise. Conclusions: Approaches that allow smartphone-based monitoring of speech patterns in mood disorders are rapidly growing. The current body of evidence supports the value of speech patterns to monitor, classify, and predict mood states in real time. However, many challenges remain around the robustness, cost-effectiveness, and acceptability of such an approach and further work is required to build on current research and reduce heterogeneity of methodologies as well as clinical evaluation of the benefits and risks of such approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白桦林泪发布了新的文献求助10
4秒前
5秒前
小医发布了新的文献求助10
8秒前
23秒前
onecloudhere发布了新的文献求助10
30秒前
31秒前
TXZ06完成签到,获得积分10
31秒前
34秒前
bkagyin应助烂漫的汲采纳,获得10
40秒前
41秒前
李爱国应助onecloudhere采纳,获得10
42秒前
Akim应助onecloudhere采纳,获得10
42秒前
科研通AI2S应助Jennie369采纳,获得10
47秒前
xz发布了新的文献求助20
59秒前
1分钟前
传奇3应助周胖胖采纳,获得10
1分钟前
烂漫的汲发布了新的文献求助10
1分钟前
1分钟前
开朗雪卉完成签到 ,获得积分10
1分钟前
烂漫的访琴完成签到,获得积分10
1分钟前
科研通AI2S应助欣慰的寒烟采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
ccl发布了新的文献求助10
2分钟前
wenyh发布了新的文献求助10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
2分钟前
ccl完成签到,获得积分10
2分钟前
2分钟前
闪闪元瑶发布了新的文献求助10
2分钟前
2分钟前
松子的ee完成签到 ,获得积分10
2分钟前
2分钟前
爆米花应助烂漫的汲采纳,获得10
3分钟前
3分钟前
3分钟前
烂漫的汲发布了新的文献求助10
3分钟前
冫义斗完成签到 ,获得积分10
3分钟前
Lan完成签到 ,获得积分10
3分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422860
求助须知:如何正确求助?哪些是违规求助? 3023242
关于积分的说明 8903863
捐赠科研通 2710624
什么是DOI,文献DOI怎么找? 1486610
科研通“疑难数据库(出版商)”最低求助积分说明 687127
邀请新用户注册赠送积分活动 682330