Graph embedding clustering: Graph attention auto-encoder with cluster-specificity distribution

聚类分析 计算机科学 理论计算机科学 聚类系数 嵌入 图嵌入 图形 人工智能 星团(航天器) 模式识别(心理学) 数据挖掘 拓扑(电路) 数学 组合数学 程序设计语言
作者
Huiling Xu,Wei Xia,Quanxue Gao,Jungong Han,Xinbo Gao
出处
期刊:Neural Networks [Elsevier BV]
卷期号:142: 221-230 被引量:21
标识
DOI:10.1016/j.neunet.2021.05.008
摘要

Towards exploring the topological structure of data, numerous graph embedding clustering methods have been developed in recent years, none of them takes into account the cluster-specificity distribution of the nodes representations, resulting in suboptimal clustering performance. Moreover, most existing graph embedding clustering methods execute the nodes representations learning and clustering in two separated steps, which increases the instability of its original performance. Additionally, rare of them simultaneously takes node attributes reconstruction and graph structure reconstruction into account, resulting in degrading the capability of graph learning. In this work, we integrate the nodes representations learning and clustering into a unified framework, and propose a new deep graph attention auto-encoder for nodes clustering that attempts to learn more favorable nodes representations by leveraging self-attention mechanism and node attributes reconstruction. Meanwhile, a cluster-specificity distribution constraint, which is measured by ℓ1,2-norm, is employed to make the nodes representations within the same cluster end up with a common distribution in the dimension space while representations with different clusters have different distributions in the intrinsic dimensions. Extensive experiment results reveal that our proposed method is superior to several state-of-the-art methods in terms of performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FashionBoy应助快乐马采纳,获得10
2秒前
88C真是太神奇啦完成签到,获得积分10
2秒前
潇洒的平松完成签到,获得积分10
3秒前
隐形曼青应助Songsong采纳,获得10
4秒前
5秒前
Orange应助DrYang采纳,获得10
5秒前
6秒前
000发布了新的文献求助10
6秒前
Clover完成签到 ,获得积分10
7秒前
小妮子发布了新的文献求助10
10秒前
还单身的惜文完成签到 ,获得积分10
10秒前
Xiaoxiao举报rh1006求助涉嫌违规
10秒前
Neo完成签到,获得积分10
11秒前
14秒前
二三发布了新的文献求助10
15秒前
Cindy完成签到,获得积分10
15秒前
稳重翠完成签到 ,获得积分10
16秒前
psycho完成签到,获得积分10
17秒前
666发布了新的文献求助10
18秒前
一直完成签到,获得积分20
20秒前
我是老大应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
茶送白粥应助科研通管家采纳,获得10
21秒前
茶送白粥应助科研通管家采纳,获得10
22秒前
茶送白粥应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
桐桐应助科研通管家采纳,获得10
22秒前
22秒前
ED应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
23秒前
Hz发布了新的文献求助10
24秒前
学术小天才完成签到,获得积分10
26秒前
26秒前
明天见发布了新的文献求助10
27秒前
科目三应助666采纳,获得10
28秒前
在水一方应助勤劳糜采纳,获得10
28秒前
糯米糍发布了新的文献求助20
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343