材料科学
铁电性
电场
钛酸钡
位错
电场位移场
凝聚态物理
极化(电化学)
半导体
极化密度
各向异性
电介质
复合材料
压电
光电子学
光学
物理
磁化
化学
物理化学
量子力学
磁场
作者
Marion Höfling,Xiandong Zhou,Lukas M. Riemer,Enrico Bruder,Binzhi Liu,Lin Zhou,Pedro B. Groszewicz,Fangping Zhuo,Bai‐Xiang Xu,Karsten Durst,Xiaoli Tan,Dragan Damjanović,Jurij Koruza,Jürgen Rödel
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2021-05-27
卷期号:372 (6545): 961-964
被引量:108
标识
DOI:10.1126/science.abe3810
摘要
Defects are essential to engineering the properties of functional materials ranging from semiconductors and superconductors to ferroics. Whereas point defects have been widely exploited, dislocations are commonly viewed as problematic for functional materials and not as a microstructural tool. We developed a method for mechanically imprinting dislocation networks that favorably skew the domain structure in bulk ferroelectrics and thereby tame the large switching polarization and make it available for functional harvesting. The resulting microstructure yields a strong mechanical restoring force to revert electric field-induced domain wall displacement on the macroscopic level and high pinning force on the local level. This induces a giant increase of the dielectric and electromechanical response at intermediate electric fields in barium titanate [electric field-dependent permittivity (ε33) ≈ 5800 and large-signal piezoelectric coefficient (d33*) ≈ 1890 picometers/volt]. Dislocation-based anisotropy delivers a different suite of tools with which to tailor functional materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI