骨髓
间质细胞
干细胞
间充质干细胞
病理
生物
医学
细胞生物学
作者
Bianca Nowlan,Kathryn Futrega,Elizabeth D. Williams,Michael R. Doran
标识
DOI:10.1186/s13287-021-02297-7
摘要
Abstract Background Direct bone marrow injection of cells into murine marrow cavities is used in a range of cell characterization assays and to develop disease models. While human bone marrow-derived stromal cells (hBMSC, also known as mesenchymal stem cells (MSC)) are frequently described in therapeutic applications, or disease modeling, their behavior following direct injection into murine bone marrow is poorly characterized. Herein, we characterized hBMSC engraftment and persistence within the bone marrow of NOD- scid interleukin (IL)-2γ −/− (NSG) mice with or without prior 2 Gy total-body γ-irradiation of recipient mice. Methods One day after conditioning NSG mice with sublethal irradiation, 5 × 10 5 luciferase (Luc) and green fluorescent protein (GFP)-expressing hBMSC (hBMSC-Luc/GFP) were injected into the right femurs of animals. hBMSC-Luc/GFP were tracked in live animals using IVIS imaging, and histology was used to further characterize hBMSC location and behavior in tissues. Results hBMSC-Luc/GFP number within injected marrow cavities declined rapidly over 4 weeks, but prior irradiation of animals delayed this decline. At 4 weeks, hBMSC-Luc/GFP colonized injected marrow cavities and distal marrow cavities at rates of 2.5 ± 2.2% and 1.7 ± 1.9% of total marrow nucleated cells, respectively in both irradiated and non-irradiated mice. In distal marrow cavities, hBMSC were not uniformly distributed and appeared to be co-localized in clusters, with the majority found in the endosteal region. Conclusions While significant numbers of hBMSC-Luc/GFP could be deposited into the mouse bone marrow via direct bone marrow injection, IVIS imaging indicated that the number of hBMSC-Luc/GFP in that bone marrow cavity declined with time. Irradiation of mice prior to transplant only delayed the rate of hBMSC-Luc/GFP population decline in injected femurs. Clusters of hBMSC-Luc/GFP were observed in the histology of distal marrow cavities, suggesting that some transplanted cells actively homed to distal marrow cavities. Individual cell clusters may have arisen from discrete clones that homed to the marrow, and then underwent modest proliferation. The transient high-density population of hBMSC within the injected femur, or the longer-term low-density population of hBMSC in distal marrow cavities, offers useful models for studying disease or regenerative processes. Experimental designs should consider how relative hBMSC distribution and local hBMSC densities evolve over time.
科研通智能强力驱动
Strongly Powered by AbleSci AI