免疫系统
自身抗体
医学
狼疮性肾炎
人口
系统性红斑狼疮
CD8型
自身免疫性疾病
内科学
免疫学
化学
肾炎
抗体
疾病
环境卫生
作者
Chi Liu,Zhidan Wang,Xin Hu,Hidenori Ito,Kiwamu Takahashi,Motowo Nakajima,Tohru Tanaka,Ping Zhu,Xiao‐Kang Li
标识
DOI:10.1016/j.intimp.2021.107626
摘要
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the abnormal activation of immune cells and hypersecretion of autoantibodies and causes irreversible chronic damage, such as lupus nephritis. Chronic graft-versus-host-disease (cGvHD) in mice induced by the injection of parental mouse lymphocytes into F1 hybrids leads to a disease similar to SLE. 5-aminolevulinic acid (5-ALA) is a key progenitor of heme, and its combination with sodium ferrous citrate (SFC) can up-regulate the heme oxygenase (HO-1) expression, resulting in an anti-inflammatory effect. While HO-1 had been reported to be involved in T cell activation and can limit immune-based tissue damage through Treg suppression, which promotes effector response. Thus, we hypothesized that treatment with 5-ALA/SFC could ameliorate lupus nephritis in a mouse cGvHD model. Our results showed that 5-ALA/SFC-treatment significantly decreased the anti-double-stranded DNA (ds-DNA) autoantibodies, blood urea nitrogen (BUN) and creatinine (Cre) levels, reduced kidney inflammatory dendritic cells (DCs) and B cell activation, and increased the regulatory T cells (Tregs) at nine weeks. Furthermore, 5-ALA/SFC suppressed mRNA expression of TNF-α, IL-1β, IFN-γ and markers on DCs. In addition, we also found that 5-ALA/SFC treatment increased the HO-1 expression on donor-derived DCs and Tregs concurrently, increased the number of Tregs, and reduced the population of activated DCs, B cells and CD8+ T cells at three weeks (early stage of the disease). We thus identified a novel role of 5-ALA/SFC for therapeutically improving the symptoms of lupus nephritis in a mouse cGvHD model and expanded the current understanding of how this immunoregulatory agent can be used to generate beneficial immune responses and treat autoimmune disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI