Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency

生物传感器 超材料 分析物 胶质瘤 太赫兹辐射 材料科学 电磁感应透明 共振(粒子物理) 光电子学 纳米技术 化学 物理 生物 原子物理学 色谱法 癌症研究
作者
Jin Zhang,Ning Mu,Longhai Liu,Jianhua Xie,Hua Feng,Jianquan Yao,Tunan Chen,Weiren Zhu
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:185: 113241-113241 被引量:195
标识
DOI:10.1016/j.bios.2021.113241
摘要

Metamaterial-inspired biosensors have been extensively studied recently years for fast and low-cost THz detection. However, only the variation of the resonance frequency has been closely concerned in such sensors so far, whiles the magnitude variation, which also provide important information of the analyte, has not been sufficiently analyzed. In this paper, by the observation of two degree of variations, we propose a label-free biosensing approach for molecular classification of glioma cells. The metamaterial biosensor consisting of cut wires and split ring resonators are proposed to realize polarization-independent electromagnetic induced transparency (EIT) at THz frequencies. Simulated results show that the EIT-like resonance experiences both resonance frequency and magnitude variations when the properties of analyte change, which is further explained with coupled oscillators model theory. The theoretical sensitivity of the biosensor is evaluated up to 496.01 GHz/RIU. In experiments, two types of glioma cells (mutant and wild-type) are cultured on the biosensor surface. The dependences of frequency shifts and the peak magnitude variations on the cells concentrations for different types give new perspective for molecular classification of glioma cells. The measured results indicate that the mutant and wild-type glioma cells can be distinguished directly by observing both the variations of EIT resonance frequency and magnitude at any cells concentrations without antibody introduction. Our metamaterial-based biosensor shows a great potential in the recognition of molecule types of glioma cells, opening alternative way to sensitive biosensing technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楼梯口无头女孩完成签到,获得积分10
2秒前
2秒前
Grayball应助gg采纳,获得10
2秒前
2秒前
456发布了新的文献求助10
2秒前
3秒前
凤凰山发布了新的文献求助10
3秒前
独特的绿蝶完成签到,获得积分10
3秒前
3秒前
清歌扶酒发布了新的文献求助10
3秒前
东风完成签到,获得积分10
4秒前
5秒前
呆萌幼晴完成签到,获得积分10
5秒前
qinqiny完成签到 ,获得积分10
6秒前
6秒前
周小慧完成签到,获得积分20
6秒前
轻松的人龙完成签到,获得积分20
6秒前
小蘑菇应助yxf采纳,获得10
6秒前
1199关注了科研通微信公众号
6秒前
星辰大海应助小赞芽采纳,获得10
6秒前
郑开司09发布了新的文献求助10
7秒前
溪与芮行完成签到 ,获得积分10
7秒前
QS完成签到,获得积分10
7秒前
彭于晏应助Stanley采纳,获得10
9秒前
小二郎应助Stanley采纳,获得10
9秒前
扑通扑通通完成签到 ,获得积分10
9秒前
lgh完成签到,获得积分10
10秒前
研友_ZAVod8发布了新的文献求助10
10秒前
10秒前
打打应助贤惠的豪英采纳,获得10
11秒前
仙子狗尾巴花完成签到,获得积分10
11秒前
虎咪咪完成签到,获得积分10
11秒前
liyi发布了新的文献求助10
11秒前
悠旷完成签到 ,获得积分10
11秒前
dingdong完成签到,获得积分20
11秒前
11秒前
科研通AI5应助凤凰山采纳,获得10
11秒前
碱性沉默完成签到,获得积分10
11秒前
晓晖完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762