Early diagnosis of Alzheimer’s disease on ADNI data using novel longitudinal score based on functional principal component analysis

医学 纵向研究 疾病 磁共振成像 接收机工作特性 主成分分析 Lasso(编程语言) 人口 内科学 物理医学与康复 人工智能 病理 放射科 计算机科学 环境卫生 万维网
作者
Haolun Shi,Da Ma,Yunlong Nie,Mirza Faisal Beg,Jian Pei,Jiguo Cao
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:8 (02) 被引量:2
标识
DOI:10.1117/1.jmi.8.2.024502
摘要

Methods: Alzheimer's disease (AD) is a worldwide prevalent age-related neurodegenerative disease with no available cure yet. Early prognosis is therefore crucial for planning proper clinical intervention. It is especially true for people diagnosed with mild cognitive impairment, to whom the prediction of whether and when the future disease onset would happen is particularly valuable. However, such prognostic prediction has been proven to be challenging, and previous studies have only achieved limited success. Approach: In this study, we seek to extract the principal component of the longitudinal disease progression trajectory in the early stage of AD, measured as the magnetic resonance imaging (MRI)-derived structural volume, to predict the onset of AD for mild cognitive impaired patients two years ahead. Results: Cross-validation results of LASSO regression using the longitudinal functional principal component (FPC) features show significant improved predictive power compared to training using the baseline volume 12 months before AD conversion [area under the receiver operating characteristic curve (AUC) of 0.802 versus 0.732] and 24 months before AD conversion (AUC of 0.816 versus 0.717). Conclusions: We present a framework using the FPCA to extract features from MRI-derived information collected from multiple timepoints. The results of our study demonstrate the advantageous predictive power of the population-based longitudinal features to predict the disease onset compared with using only cross-sectional data-based on volumetric features extracted from a single timepoint, demonstrating the improved prediction power using FPC-derived longitudinal features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助忘久采纳,获得10
刚刚
木木VV发布了新的文献求助10
刚刚
天空的惊雷给天空的惊雷的求助进行了留言
2秒前
NexusExplorer应助能干的孤丝采纳,获得10
2秒前
3秒前
jouholly完成签到,获得积分10
3秒前
wanli445发布了新的文献求助10
3秒前
4秒前
现代的bb完成签到,获得积分10
6秒前
养猪人完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
David完成签到,获得积分10
11秒前
砖石发布了新的文献求助10
12秒前
12秒前
锂炸发布了新的文献求助10
13秒前
13秒前
阿珩完成签到,获得积分10
14秒前
樱桃小贩完成签到,获得积分10
16秒前
17秒前
楠薏发布了新的文献求助10
17秒前
18秒前
znlion完成签到,获得积分10
18秒前
19秒前
妙旋克里斯完成签到,获得积分10
21秒前
情怀应助红书包采纳,获得10
21秒前
绣冬发布了新的文献求助10
22秒前
24秒前
24秒前
wanli445完成签到,获得积分10
25秒前
yu发布了新的文献求助10
26秒前
菜菜子发布了新的文献求助10
27秒前
豆包发布了新的文献求助10
28秒前
28秒前
28秒前
充电宝应助elleomona采纳,获得10
29秒前
搜集达人应助舒心的大有采纳,获得30
31秒前
33秒前
FashionBoy应助着急的cc采纳,获得10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557621
求助须知:如何正确求助?哪些是违规求助? 3132674
关于积分的说明 9398679
捐赠科研通 2832882
什么是DOI,文献DOI怎么找? 1557088
邀请新用户注册赠送积分活动 727082
科研通“疑难数据库(出版商)”最低求助积分说明 716184