Physics-informed Neural Network for Estimation of Lithium-Ion Battery State-of-health

可解释性 杠杆(统计) 电池(电) 计算机科学 锂离子电池 人工智能 人工神经网络 机器学习 锂(药物) 功率(物理) 物理 量子力学 医学 内分泌学
作者
Sung Wook Kim,Oh Ki Yong,Seung−Chul Lee
出处
期刊:Transactions of The Korean Society for Noise and Vibration Engineering 卷期号:31 (2): 177-184 被引量:2
标识
DOI:10.5050/ksnve.2021.31.2.177
摘要

Currently, lithium-ion batteries are becoming the most promising power source for a variety of portable electronics as well as electric vehicles. Some of the advantages that promote their widespread usage include their long battery cycle life, high durability, low self-discharge rate, and fast charge rate. However, despite their superiority in comparison with other power sources, there exists a lack of understanding regarding their battery lifetime owing to their sophisticated electrochemical actions, which cannot be sufficiently modeled and predicted using traditional physics-based models. This limitation has motivated the development of numerous data-driven approaches. However, data-driven methods also have certain limitations, such as low interpretability and inability to extrapolate well. This necessitates an alternative method that can leverage the strengths of both models while complementing their drawbacks. In this study, the state-of-health of lithium-ion batteries is estimated using a physics-informed neural network with the integration of physics in the deep learning pipeline. The results of this study indicate that the proposed model outperforms the conventional data-driven methods in RMSE and physical inconsistency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
超级小刺猬完成签到 ,获得积分10
1秒前
坦率的从丹完成签到 ,获得积分10
1秒前
2秒前
勿念完成签到,获得积分20
2秒前
2秒前
贪玩飞珍发布了新的文献求助10
3秒前
4秒前
科目三应助科研通管家采纳,获得10
6秒前
Momomo应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
小Y应助科研通管家采纳,获得20
6秒前
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
7秒前
8R60d8应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
8R60d8应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
8R60d8应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
小米发布了新的文献求助10
7秒前
杰杰关注了科研通微信公众号
7秒前
852应助科研通管家采纳,获得10
7秒前
8R60d8应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得30
8秒前
9秒前
雷霆康康完成签到,获得积分10
9秒前
10秒前
石广明关注了科研通微信公众号
10秒前
冷静丸子完成签到 ,获得积分10
12秒前
深情安青应助舒心代柔采纳,获得10
13秒前
朝菌完成签到,获得积分10
14秒前
errui发布了新的文献求助20
14秒前
14秒前
黑黑嘿发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495177
求助须知:如何正确求助?哪些是违规求助? 4592877
关于积分的说明 14439094
捐赠科研通 4525740
什么是DOI,文献DOI怎么找? 2479654
邀请新用户注册赠送积分活动 1464467
关于科研通互助平台的介绍 1437333