随机变量
数学
推论
一致性(知识库)
维数(图论)
秩(图论)
协方差矩阵
基质(化学分析)
统计推断
样本量测定
控制变量
算法
应用数学
统计
蒙特卡罗方法
计算机科学
随机变量
人工智能
马尔科夫蒙特卡洛
组合数学
混合蒙特卡罗
离散数学
材料科学
复合材料
作者
Elynn Chen,Jianqing Fan
标识
DOI:10.1080/01621459.2021.1970569
摘要
This paper considers the estimation and inference of the low-rank components in high-dimensional matrix-variate factor models, where each dimension of the matrix-variates ($p \times q$) is comparable to or greater than the number of observations ($T$). We propose an estimation method called $\alpha$-PCA that preserves the matrix structure and aggregates mean and contemporary covariance through a hyper-parameter $\alpha$. We develop an inferential theory, establishing consistency, the rate of convergence, and the limiting distributions, under general conditions that allow for correlations across time, rows, or columns of the noise. We show both theoretical and empirical methods of choosing the best $\alpha$, depending on the use-case criteria. Simulation results demonstrate the adequacy of the asymptotic results in approximating the finite sample properties. The $\alpha$-PCA compares favorably with the existing ones. Finally, we illustrate its applications with a real numeric data set and two real image data sets. In all applications, the proposed estimation procedure outperforms previous methods in the power of variance explanation using out-of-sample 10-fold cross-validation.
科研通智能强力驱动
Strongly Powered by AbleSci AI