Deep H-GCN: Fast Analog IC Aging-Induced Degradation Estimation

可扩展性 计算机科学 晶体管 图形 深度学习 二部图 拓扑(电路) 电子工程 人工智能 理论计算机科学 工程类 电气工程 数据库 电压
作者
Tinghuan Chen,Frank B. Hu,Canhui Zhan,C.T. Liu,Huatao Yu,Bei Yu
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:41 (7): 1990-2003 被引量:1
标识
DOI:10.1109/tcad.2021.3107250
摘要

With continued scaling, the transistor aging induced by hot carrier injection (HCI) and bias temperature instability (BTI) causes an increasing failure of nanometer-scale integrated circuits (ICs). Compared to digital ICs, analog ICs are more susceptible to aging effects. The industrial large-scale analog ICs bring grand challenges in the efficiency of aging verification. In this article, we propose a heterogeneous graph convolutional network (H-GCN) to fast estimate aging-induced transistor degradation in analog ICs. To characterize the multityped devices and connection pins, a heterogeneous directed multigraph is adopted to efficiently represent the topology of analog ICs. A latent space mapping method is used to transform the feature vector of all typed devices into a unified latent space. We further extend the proposed H-GCN to be a deep version via initial residual connections and identity mappings. The extended deep H-GCN can extract information from multihop devices without an oversmoothing issue. A probability-based neighborhood sampling method on the bipartite graph is adopted to ease the model training on large-scale graphs and achieve good scalability. Experiments on very advanced 5-nm industrial benchmarks show that, compared to traditional graph learning methods and static aging reliability simulations by an industrial design-for-reliability (DFR) tool, the proposed deep H-GCN can achieve more accurate estimations of aging-induced transistor degradation. Compared to the dynamic and static aging reliability simulations, our extended deep H-GCN, on average, can achieve $241\times $ and $39\times $ speedup, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿依波完成签到,获得积分10
2秒前
卡卡光波完成签到,获得积分10
2秒前
小五完成签到,获得积分10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
9秒前
实验老六发布了新的文献求助20
11秒前
Harbour-Y完成签到 ,获得积分10
11秒前
打我呀发布了新的文献求助10
14秒前
Ksharp10完成签到,获得积分0
20秒前
20秒前
小高完成签到 ,获得积分10
25秒前
实验老六完成签到,获得积分10
26秒前
29秒前
搜集达人应助yu_Panda采纳,获得10
31秒前
无花果应助ldjldj_2004采纳,获得10
32秒前
33秒前
34秒前
stephen完成签到,获得积分10
36秒前
mary发布了新的文献求助10
38秒前
39秒前
蓝胖子完成签到 ,获得积分10
39秒前
41秒前
Chen_Liu完成签到,获得积分10
44秒前
北酒鱼完成签到,获得积分10
44秒前
dashi完成签到 ,获得积分10
46秒前
Hou发布了新的文献求助10
46秒前
uppnice发布了新的文献求助10
48秒前
49秒前
50秒前
tracywan完成签到,获得积分10
51秒前
玉yu发布了新的文献求助10
52秒前
仁爱的老黑完成签到,获得积分10
53秒前
tracywan发布了新的文献求助10
54秒前
58秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3348980
求助须知:如何正确求助?哪些是违规求助? 2975158
关于积分的说明 8667750
捐赠科研通 2655836
什么是DOI,文献DOI怎么找? 1454224
科研通“疑难数据库(出版商)”最低求助积分说明 673254
邀请新用户注册赠送积分活动 663696