Deep H-GCN: Fast Analog IC Aging-Induced Degradation Estimation

可扩展性 计算机科学 晶体管 图形 深度学习 二部图 拓扑(电路) 电子工程 人工智能 理论计算机科学 工程类 电气工程 数据库 电压
作者
Tinghuan Chen,Frank B. Hu,Canhui Zhan,C.T. Liu,Huatao Yu,Bei Yu
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:41 (7): 1990-2003 被引量:1
标识
DOI:10.1109/tcad.2021.3107250
摘要

With continued scaling, the transistor aging induced by hot carrier injection (HCI) and bias temperature instability (BTI) causes an increasing failure of nanometer-scale integrated circuits (ICs). Compared to digital ICs, analog ICs are more susceptible to aging effects. The industrial large-scale analog ICs bring grand challenges in the efficiency of aging verification. In this article, we propose a heterogeneous graph convolutional network (H-GCN) to fast estimate aging-induced transistor degradation in analog ICs. To characterize the multityped devices and connection pins, a heterogeneous directed multigraph is adopted to efficiently represent the topology of analog ICs. A latent space mapping method is used to transform the feature vector of all typed devices into a unified latent space. We further extend the proposed H-GCN to be a deep version via initial residual connections and identity mappings. The extended deep H-GCN can extract information from multihop devices without an oversmoothing issue. A probability-based neighborhood sampling method on the bipartite graph is adopted to ease the model training on large-scale graphs and achieve good scalability. Experiments on very advanced 5-nm industrial benchmarks show that, compared to traditional graph learning methods and static aging reliability simulations by an industrial design-for-reliability (DFR) tool, the proposed deep H-GCN can achieve more accurate estimations of aging-induced transistor degradation. Compared to the dynamic and static aging reliability simulations, our extended deep H-GCN, on average, can achieve $241\times $ and $39\times $ speedup, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨天发布了新的文献求助10
1秒前
1秒前
wr发布了新的文献求助30
1秒前
nn完成签到,获得积分10
2秒前
丘比特应助刘玥言采纳,获得10
2秒前
你好啊完成签到,获得积分10
3秒前
007发布了新的文献求助10
3秒前
涛ya完成签到,获得积分10
4秒前
小二郎应助冷萃采纳,获得10
5秒前
5秒前
上官若男应助llllt采纳,获得10
5秒前
6秒前
lkj完成签到,获得积分10
7秒前
超级如风发布了新的文献求助10
8秒前
思源应助HY采纳,获得10
9秒前
janarbek完成签到,获得积分10
9秒前
10秒前
申屠完成签到,获得积分20
13秒前
13秒前
SciGPT应助刀光照亮黑夜采纳,获得10
14秒前
爆米花应助007采纳,获得10
15秒前
研友_VZG7GZ应助wsw采纳,获得10
15秒前
申屠发布了新的文献求助10
17秒前
Hello应助果汁采纳,获得10
18秒前
犹豫的初丹完成签到,获得积分10
18秒前
南歌子完成签到 ,获得积分10
19秒前
19秒前
666发布了新的文献求助10
20秒前
Dsunflower完成签到 ,获得积分10
24秒前
24秒前
25秒前
zby2发布了新的文献求助10
29秒前
31秒前
wr完成签到,获得积分10
31秒前
彭于晏应助八二力采纳,获得10
32秒前
32秒前
33秒前
xdl120318发布了新的文献求助10
33秒前
粒子发布了新的文献求助10
35秒前
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967156
求助须知:如何正确求助?哪些是违规求助? 3512491
关于积分的说明 11163601
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804468