Bayesian metamodeling of complex biological systems across varying representations

元建模 计算机科学 图形模型 机器学习 程序设计语言
作者
Barak Raveh,Liping Sun,Katherine M. White,Tanmoy Sanyal,Jeremy O. B. Tempkin,Dongqing Zheng,Kala Bharath,Jitin Singla,Chunqing Wang,Jihui Zhao,Angdi Li,Nicholas A. J. Graham,Carl Kesselman,Raymond C. Stevens,Andrej Sali
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:118 (35) 被引量:12
标识
DOI:10.1073/pnas.2104559118
摘要

Comprehensive modeling of a whole cell requires an integration of vast amounts of information on various aspects of the cell and its parts. To divide and conquer this task, we introduce Bayesian metamodeling, a general approach to modeling complex systems by integrating a collection of heterogeneous input models. Each input model can in principle be based on any type of data and can describe a different aspect of the modeled system using any mathematical representation, scale, and level of granularity. These input models are 1) converted to a standardized statistical representation relying on probabilistic graphical models, 2) coupled by modeling their mutual relations with the physical world, and 3) finally harmonized with respect to each other. To illustrate Bayesian metamodeling, we provide a proof-of-principle metamodel of glucose-stimulated insulin secretion by human pancreatic β-cells. The input models include a coarse-grained spatiotemporal simulation of insulin vesicle trafficking, docking, and exocytosis; a molecular network model of glucose-stimulated insulin secretion signaling; a network model of insulin metabolism; a structural model of glucagon-like peptide-1 receptor activation; a linear model of a pancreatic cell population; and ordinary differential equations for systemic postprandial insulin response. Metamodeling benefits from decentralized computing, while often producing a more accurate, precise, and complete model that contextualizes input models as well as resolves conflicting information. We anticipate Bayesian metamodeling will facilitate collaborative science by providing a framework for sharing expertise, resources, data, and models, as exemplified by the Pancreatic β-Cell Consortium.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lan发布了新的文献求助10
刚刚
韩金龙发布了新的文献求助10
1秒前
1秒前
小飞七应助红毛兔采纳,获得10
1秒前
小仙虎殿下完成签到 ,获得积分10
1秒前
Ethan完成签到,获得积分10
2秒前
2秒前
3秒前
感谢抹茶芋泥小圆子转发科研通微信,获得积分50
3秒前
子春完成签到 ,获得积分10
3秒前
平常的纸飞机完成签到,获得积分10
3秒前
soso完成签到 ,获得积分10
5秒前
5秒前
狗狗应助跳跃乘风采纳,获得20
6秒前
小油条应助Amai采纳,获得20
6秒前
科研通AI5应助clear采纳,获得10
6秒前
韩金龙完成签到,获得积分10
7秒前
科研通AI2S应助LiShin采纳,获得10
7秒前
希望天下0贩的0应助尘雾采纳,获得10
9秒前
9秒前
12345完成签到,获得积分10
10秒前
Lialilico完成签到,获得积分10
11秒前
Akim应助我必做出来采纳,获得50
11秒前
12秒前
随机起的名完成签到,获得积分10
12秒前
Owen应助努力的小狗屁采纳,获得10
13秒前
13秒前
vuig完成签到 ,获得积分10
13秒前
哈哈哈的一笑完成签到,获得积分10
13秒前
13秒前
Emma完成签到,获得积分10
13秒前
14秒前
14秒前
研友_VZG7GZ应助不吃香菜采纳,获得10
14秒前
huanger完成签到,获得积分10
14秒前
Tayzon完成签到 ,获得积分10
14秒前
我测你码完成签到,获得积分10
14秒前
超级宇宙二踢脚完成签到,获得积分10
15秒前
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794