Bayesian metamodeling of complex biological systems across varying representations

元建模 计算机科学 图形模型 机器学习 程序设计语言
作者
Barak Raveh,Liping Sun,Katherine M. White,Tanmoy Sanyal,Jeremy O. B. Tempkin,Dongqing Zheng,Kala Bharath,Jitin Singla,Chunqing Wang,Jihui Zhao,Angdi Li,Nicholas A. J. Graham,Carl Kesselman,Raymond C. Stevens,Andrej Sali
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:118 (35) 被引量:12
标识
DOI:10.1073/pnas.2104559118
摘要

Comprehensive modeling of a whole cell requires an integration of vast amounts of information on various aspects of the cell and its parts. To divide and conquer this task, we introduce Bayesian metamodeling, a general approach to modeling complex systems by integrating a collection of heterogeneous input models. Each input model can in principle be based on any type of data and can describe a different aspect of the modeled system using any mathematical representation, scale, and level of granularity. These input models are 1) converted to a standardized statistical representation relying on probabilistic graphical models, 2) coupled by modeling their mutual relations with the physical world, and 3) finally harmonized with respect to each other. To illustrate Bayesian metamodeling, we provide a proof-of-principle metamodel of glucose-stimulated insulin secretion by human pancreatic β-cells. The input models include a coarse-grained spatiotemporal simulation of insulin vesicle trafficking, docking, and exocytosis; a molecular network model of glucose-stimulated insulin secretion signaling; a network model of insulin metabolism; a structural model of glucagon-like peptide-1 receptor activation; a linear model of a pancreatic cell population; and ordinary differential equations for systemic postprandial insulin response. Metamodeling benefits from decentralized computing, while often producing a more accurate, precise, and complete model that contextualizes input models as well as resolves conflicting information. We anticipate Bayesian metamodeling will facilitate collaborative science by providing a framework for sharing expertise, resources, data, and models, as exemplified by the Pancreatic β-Cell Consortium.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溺水的鸭子完成签到,获得积分10
刚刚
姝飞糊涂发布了新的文献求助10
1秒前
天南完成签到,获得积分10
1秒前
2秒前
3秒前
bukeshuo发布了新的文献求助10
3秒前
4秒前
大个应助嘻嘻采纳,获得10
4秒前
火眼金睛完成签到,获得积分10
5秒前
5秒前
Akim应助苹果不平采纳,获得10
5秒前
体贴半仙完成签到,获得积分10
5秒前
6秒前
7秒前
碧蓝的果汁完成签到,获得积分10
8秒前
柠檬味电子对儿完成签到,获得积分10
10秒前
10秒前
iNk应助可耐的冷松采纳,获得20
10秒前
newbiology完成签到,获得积分10
10秒前
12秒前
yuchao_0110发布了新的文献求助10
12秒前
13秒前
房房房破防啦完成签到,获得积分10
14秒前
英姑应助荔枝多酚采纳,获得10
14秒前
misstwo完成签到,获得积分10
15秒前
Forest完成签到,获得积分10
15秒前
16秒前
CLX发布了新的文献求助10
16秒前
英姑应助德德采纳,获得10
17秒前
恰好发布了新的文献求助10
18秒前
苹果不平发布了新的文献求助10
18秒前
i-bear发布了新的文献求助10
20秒前
20秒前
man完成签到,获得积分10
21秒前
21秒前
DaYongDan完成签到 ,获得积分10
22秒前
23秒前
英姑应助平淡的浩宇采纳,获得10
24秒前
严怜梦完成签到 ,获得积分10
25秒前
jioujg发布了新的文献求助10
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162844
求助须知:如何正确求助?哪些是违规求助? 2813816
关于积分的说明 7902135
捐赠科研通 2473442
什么是DOI,文献DOI怎么找? 1316849
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187