Bayesian metamodeling of complex biological systems across varying representations

元建模 计算机科学 图形模型 机器学习 程序设计语言
作者
Barak Raveh,Liping Sun,Katherine M. White,Tanmoy Sanyal,Jeremy O. B. Tempkin,Dongqing Zheng,Kala Bharath,Jitin Singla,Chunqing Wang,Jihui Zhao,Angdi Li,Nicholas A. J. Graham,Carl Kesselman,Raymond C. Stevens,Andrej Sali
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:118 (35) 被引量:12
标识
DOI:10.1073/pnas.2104559118
摘要

Comprehensive modeling of a whole cell requires an integration of vast amounts of information on various aspects of the cell and its parts. To divide and conquer this task, we introduce Bayesian metamodeling, a general approach to modeling complex systems by integrating a collection of heterogeneous input models. Each input model can in principle be based on any type of data and can describe a different aspect of the modeled system using any mathematical representation, scale, and level of granularity. These input models are 1) converted to a standardized statistical representation relying on probabilistic graphical models, 2) coupled by modeling their mutual relations with the physical world, and 3) finally harmonized with respect to each other. To illustrate Bayesian metamodeling, we provide a proof-of-principle metamodel of glucose-stimulated insulin secretion by human pancreatic β-cells. The input models include a coarse-grained spatiotemporal simulation of insulin vesicle trafficking, docking, and exocytosis; a molecular network model of glucose-stimulated insulin secretion signaling; a network model of insulin metabolism; a structural model of glucagon-like peptide-1 receptor activation; a linear model of a pancreatic cell population; and ordinary differential equations for systemic postprandial insulin response. Metamodeling benefits from decentralized computing, while often producing a more accurate, precise, and complete model that contextualizes input models as well as resolves conflicting information. We anticipate Bayesian metamodeling will facilitate collaborative science by providing a framework for sharing expertise, resources, data, and models, as exemplified by the Pancreatic β-Cell Consortium.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
teapotbxy完成签到,获得积分10
刚刚
niceLDD应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
shhoing应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
拼搏应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得20
刚刚
英姑应助科研通管家采纳,获得10
刚刚
1秒前
ChenYX发布了新的文献求助10
1秒前
外向的雨真完成签到,获得积分10
3秒前
kendrick677完成签到 ,获得积分10
8秒前
8秒前
夜行完成签到 ,获得积分10
9秒前
Jodie发布了新的文献求助10
10秒前
11秒前
NEW发布了新的文献求助10
12秒前
商丘莺完成签到,获得积分10
16秒前
111完成签到 ,获得积分10
16秒前
20秒前
222666完成签到 ,获得积分10
21秒前
无极微光应助gong采纳,获得20
21秒前
北冰石发布了新的文献求助10
25秒前
wang发布了新的文献求助10
27秒前
Hdz6688完成签到,获得积分20
27秒前
30秒前
顾矜应助大豹子采纳,获得10
32秒前
35秒前
矮冬瓜完成签到 ,获得积分10
39秒前
39秒前
隐形曼青应助NEW采纳,获得10
41秒前
46秒前
大豹子发布了新的文献求助10
46秒前
日出发布了新的文献求助10
46秒前
欧阳同志完成签到 ,获得积分10
49秒前
日出完成签到,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558000
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14669931
捐赠科研通 4584431
什么是DOI,文献DOI怎么找? 2514828
邀请新用户注册赠送积分活动 1489002
关于科研通互助平台的介绍 1459619