Bayesian metamodeling of complex biological systems across varying representations

元建模 计算机科学 图形模型 机器学习 程序设计语言
作者
Barak Raveh,Liping Sun,Katherine M. White,Tanmoy Sanyal,Jeremy O. B. Tempkin,Dongqing Zheng,Kala Bharath,Jitin Singla,Chunqing Wang,Jihui Zhao,Angdi Li,Nicholas A. J. Graham,Carl Kesselman,Raymond C. Stevens,Andrej Sali
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:118 (35) 被引量:12
标识
DOI:10.1073/pnas.2104559118
摘要

Comprehensive modeling of a whole cell requires an integration of vast amounts of information on various aspects of the cell and its parts. To divide and conquer this task, we introduce Bayesian metamodeling, a general approach to modeling complex systems by integrating a collection of heterogeneous input models. Each input model can in principle be based on any type of data and can describe a different aspect of the modeled system using any mathematical representation, scale, and level of granularity. These input models are 1) converted to a standardized statistical representation relying on probabilistic graphical models, 2) coupled by modeling their mutual relations with the physical world, and 3) finally harmonized with respect to each other. To illustrate Bayesian metamodeling, we provide a proof-of-principle metamodel of glucose-stimulated insulin secretion by human pancreatic β-cells. The input models include a coarse-grained spatiotemporal simulation of insulin vesicle trafficking, docking, and exocytosis; a molecular network model of glucose-stimulated insulin secretion signaling; a network model of insulin metabolism; a structural model of glucagon-like peptide-1 receptor activation; a linear model of a pancreatic cell population; and ordinary differential equations for systemic postprandial insulin response. Metamodeling benefits from decentralized computing, while often producing a more accurate, precise, and complete model that contextualizes input models as well as resolves conflicting information. We anticipate Bayesian metamodeling will facilitate collaborative science by providing a framework for sharing expertise, resources, data, and models, as exemplified by the Pancreatic β-Cell Consortium.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月青悠发布了新的文献求助10
1秒前
举人烧烤发布了新的文献求助10
2秒前
2秒前
111完成签到,获得积分10
3秒前
JamesPei应助CASLSD采纳,获得10
4秒前
田様应助童念之采纳,获得10
4秒前
7秒前
甜甜豁发布了新的文献求助10
7秒前
666应助晚风采纳,获得10
10秒前
潘啊潘完成签到 ,获得积分10
12秒前
爱因斯坦发布了新的文献求助10
12秒前
GeneYang完成签到,获得积分0
14秒前
16秒前
18秒前
19秒前
小马甲应助武雨寒采纳,获得10
19秒前
童念之发布了新的文献求助10
19秒前
ZzzZzH发布了新的文献求助10
21秒前
22秒前
合适台灯发布了新的文献求助10
23秒前
24秒前
26秒前
爱笑焦发布了新的文献求助20
27秒前
站走跑完成签到 ,获得积分10
27秒前
28秒前
29秒前
易寒完成签到,获得积分10
29秒前
鲤鱼白玉发布了新的文献求助10
31秒前
nunu发布了新的文献求助10
32秒前
32秒前
32秒前
Coraline应助反义词采纳,获得10
33秒前
小二郎应助SC采纳,获得10
34秒前
酷波er应助明明采纳,获得10
35秒前
太空工程师完成签到,获得积分10
35秒前
寒冷鹏煊发布了新的文献求助10
35秒前
武雨寒发布了新的文献求助10
37秒前
小蘑菇应助肉团子采纳,获得10
37秒前
38秒前
调皮小土豆完成签到,获得积分10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966955
求助须知:如何正确求助?哪些是违规求助? 3512400
关于积分的说明 11163031
捐赠科研通 3247238
什么是DOI,文献DOI怎么找? 1793759
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432