已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bayesian metamodeling of complex biological systems across varying representations

元建模 计算机科学 图形模型 机器学习 程序设计语言
作者
Barak Raveh,Liping Sun,Katherine M. White,Tanmoy Sanyal,Jeremy O. B. Tempkin,Dongqing Zheng,Kala Bharath,Jitin Singla,Chunqing Wang,Jihui Zhao,Angdi Li,Nicholas A. J. Graham,Carl Kesselman,Raymond C. Stevens,Andrej Sali
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:118 (35) 被引量:12
标识
DOI:10.1073/pnas.2104559118
摘要

Comprehensive modeling of a whole cell requires an integration of vast amounts of information on various aspects of the cell and its parts. To divide and conquer this task, we introduce Bayesian metamodeling, a general approach to modeling complex systems by integrating a collection of heterogeneous input models. Each input model can in principle be based on any type of data and can describe a different aspect of the modeled system using any mathematical representation, scale, and level of granularity. These input models are 1) converted to a standardized statistical representation relying on probabilistic graphical models, 2) coupled by modeling their mutual relations with the physical world, and 3) finally harmonized with respect to each other. To illustrate Bayesian metamodeling, we provide a proof-of-principle metamodel of glucose-stimulated insulin secretion by human pancreatic β-cells. The input models include a coarse-grained spatiotemporal simulation of insulin vesicle trafficking, docking, and exocytosis; a molecular network model of glucose-stimulated insulin secretion signaling; a network model of insulin metabolism; a structural model of glucagon-like peptide-1 receptor activation; a linear model of a pancreatic cell population; and ordinary differential equations for systemic postprandial insulin response. Metamodeling benefits from decentralized computing, while often producing a more accurate, precise, and complete model that contextualizes input models as well as resolves conflicting information. We anticipate Bayesian metamodeling will facilitate collaborative science by providing a framework for sharing expertise, resources, data, and models, as exemplified by the Pancreatic β-Cell Consortium.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助钙钛矿狗采纳,获得10
刚刚
刘刘完成签到 ,获得积分10
5秒前
6秒前
陈chen发布了新的文献求助10
6秒前
想毕业的猫猫完成签到,获得积分10
7秒前
yyds应助hao采纳,获得50
8秒前
wanci应助我又可以了采纳,获得30
9秒前
orixero应助XLT采纳,获得10
10秒前
拼搏映菡发布了新的文献求助10
12秒前
12秒前
15秒前
cyt9999发布了新的文献求助10
15秒前
hehe发布了新的文献求助10
15秒前
16秒前
科研通AI6应助janie采纳,获得10
16秒前
华仔应助janie采纳,获得10
16秒前
18秒前
Liz发布了新的文献求助10
20秒前
23秒前
abab完成签到 ,获得积分10
27秒前
27秒前
27秒前
安详的海风完成签到,获得积分10
29秒前
31秒前
天天快乐应助科研通管家采纳,获得30
32秒前
32秒前
ding应助科研通管家采纳,获得10
32秒前
Hello应助科研通管家采纳,获得10
32秒前
情怀应助科研通管家采纳,获得10
32秒前
隐形曼青应助科研通管家采纳,获得10
32秒前
Ava应助科研通管家采纳,获得10
32秒前
123456发布了新的文献求助10
32秒前
32秒前
深情安青应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
33秒前
FashionBoy应助科研通管家采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
35秒前
钙钛矿狗完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627439
求助须知:如何正确求助?哪些是违规求助? 4713759
关于积分的说明 14962257
捐赠科研通 4784702
什么是DOI,文献DOI怎么找? 2554869
邀请新用户注册赠送积分活动 1516352
关于科研通互助平台的介绍 1476696