电解质
电化学
阳极
材料科学
离子电导率
电化学窗口
过电位
离子液体
聚合物电解质
离子
化学工程
聚合物
盐(化学)
离子键合
电池(电)
锂(药物)
化学
物理化学
电极
有机化学
热力学
复合材料
功率(物理)
工程类
催化作用
医学
物理
内分泌学
作者
Fangfang Chen,Xiaoen Wang,Michel Armand,Maria Forsyth
出处
期刊:Research Square - Research Square
日期:2021-05-25
被引量:2
标识
DOI:10.21203/rs.3.rs-532893/v1
摘要
Abstract Polymer electrolytes provide a safe solution for all-solid-state high energy density batteries. Materials that meet the simultaneous requirement of high ionic conductivity and high transference number remain a challenge, in particular for new battery chemistries beyond Lithium such as Na, K and Mg. Herein, we demonstrate the versatility of a polymeric ionic liquid (PolyIL) as a solid-state solvent to achieve this goal for both Na and K. Using molecular simulations, we predict and elucidate fast metal ion transport in PolyILs through a structural diffusion mechanism in a polymer-in-salt environment, facilitating a high transference number. Experimental validation of these computational designed Na and K polymer electrolytes gives high ionic conductivities of 1.010 -3 S cm-1 at 80 o C and an exceptional Na + transference number of ~0.57. Electrochemical cycling of a sodium anode also demonstrates an ultra-low overpotential of 40 mV and stable long term performance of more than 100 hours in a symmetric cell. PolyIL-based polymer-in-salt strategies for novel solid-state electrolytes thus offer a promising route to design high performance next generation sustainable battery chemistries.
科研通智能强力驱动
Strongly Powered by AbleSci AI