纳米制造
纳米光刻
平版印刷术
材料科学
纳米技术
蚀刻(微加工)
临界尺寸
基质(水族馆)
多重图案
模块化设计
光电子学
制作
抵抗
计算机科学
光学
物理
替代医学
图层(电子)
病理
地质学
操作系统
海洋学
医学
作者
Jie Shen,Wei Sun,Di Liu,Thomas E. Schaus,Peng Yin
出处
期刊:Nature Materials
[Springer Nature]
日期:2021-04-12
卷期号:20 (5): 683-690
被引量:34
标识
DOI:10.1038/s41563-021-00930-7
摘要
Lithographic scaling of periodic three-dimensional patterns is critical for advancing scalable nanomanufacturing. Current state-of-the-art quadruple patterning or extreme-ultraviolet lithography produce a line pitch down to around 30 nm, which might be further scaled to sub-20 nm through complex post-fabrication processes. Herein, we report the use of three-dimensional (3D) DNA nanostructures to scale the line pitch down to 16.2 nm, around 50% smaller than state-of-the-art results. We use a DNA modular epitaxy approach to fabricate 3D DNA masks with prescribed structural parameters (geometry, pitch and critical dimensions) along a designer assembly pathway. Single-run reactive ion etching then transfers the DNA patterns to a Si substrate at a lateral critical dimension of 7 nm and a vertical critical dimension of 2 nm. The nanolithography guided by DNA modular epitaxy achieves a smaller pitch than the projected values for advanced technology nodes in field-effect transistors, and provides a potential complement to the existing lithographic tools for advanced 3D nanomanufacturing. Epitaxially grown 3D DNA masks with prescribed geometry, pitch and size improve the resolution of reactive ion etching-based nanolithography, scaling the line pitch down to 16.2 nm and the critical dimension size to 7.2 nm.
科研通智能强力驱动
Strongly Powered by AbleSci AI