Capsule-based Object Tracking with Natural Language Specification

计算机科学 自然语言 背景(考古学) 人工智能 布线(电子设计自动化) 变化(天文学) 自然语言处理 跟踪(教育) 自然语言用户界面 对象(语法) 计算机网络 古生物学 心理学 物理 生物 天体物理学 教育学
作者
Ding Ma,Xiangqian Wu
标识
DOI:10.1145/3474085.3475349
摘要

Tracking with Natural-Language Specification (TNL) is a joint topic of understanding the vision and natural language with a wide range of applications. In previous works, the communication between two heterogeneous features of vision and language is mainly through a simple dynamic convolution. However, the performance of prior works is capped by the difficulty of linguistic variation of natural language in modeling the dynamically changing target and its surroundings. In the meanwhile, natural language and vision are firstly fused and then utilized for tracking, which is hard to model the query-focused context. Query-focused should pay more attention to context modeling to promote the correlation between these two features. To address these issues, we propose a capsule-based network, referred to as CapsuleTNL, which performs regression tracking with natural language query. In the beginning, the visual and textual input is encoded with capsules, which can not only establish the relationship between entities but also the relationship between the parts of the entity itself. Then, we devise two interaction routing modules, which consist of visual-textual routing module to reduce the linguistic variation of input query and textual-visual routing module to precisely incorporate query-based visual cues simultaneously. To validate the potential of the proposed network for visual object tracking, we evaluate our method on two large tracking benchmarks. The experimental evaluation demonstrates the effectiveness of our capsule-based network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
席香薇发布了新的文献求助80
刚刚
赘婿应助嘟嘟采纳,获得10
1秒前
费慕青完成签到,获得积分10
2秒前
丹丹发布了新的文献求助10
3秒前
鱼鱼鱼完成签到,获得积分10
5秒前
skyinner发布了新的文献求助10
5秒前
Forever完成签到,获得积分10
5秒前
科研通AI5应助Likz采纳,获得10
7秒前
Owen应助珏珏采纳,获得10
8秒前
9秒前
ttt完成签到,获得积分10
9秒前
10秒前
有机小虾米完成签到 ,获得积分10
11秒前
YOKO完成签到,获得积分20
11秒前
11秒前
躺平开摆发布了新的文献求助10
13秒前
rendong4009完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
小陈陈再努力完成签到 ,获得积分10
15秒前
15秒前
15秒前
17秒前
哒哒哒发布了新的文献求助10
17秒前
yyyyyy发布了新的文献求助10
18秒前
zhangni发布了新的文献求助10
19秒前
YUMI发布了新的文献求助10
19秒前
研友_VZG7GZ应助日耳曼战车采纳,获得10
20秒前
2011完成签到 ,获得积分10
20秒前
23秒前
26秒前
26秒前
28秒前
28秒前
猪猪hero应助Lojong采纳,获得10
29秒前
30秒前
30秒前
呆头灰鸟发布了新的文献求助10
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479673
求助须知:如何正确求助?哪些是违规求助? 3070242
关于积分的说明 9117179
捐赠科研通 2761968
什么是DOI,文献DOI怎么找? 1515600
邀请新用户注册赠送积分活动 701060
科研通“疑难数据库(出版商)”最低求助积分说明 699987