A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms

计算机科学 模式(计算机接口) 理论(学习稳定性) 支持向量机 分解 人工神经网络 深度学习 人工智能 机器学习 数据挖掘 算法 工程类 废物管理 操作系统 生物 生态学
作者
Kefei Zhang,Hua Cao,Jesse Thé,Hesheng Yu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:306: 118011-118011 被引量:80
标识
DOI:10.1016/j.apenergy.2021.118011
摘要

Accurate and reliable coal price prediction is of great significance to enhance the stability of the coal market. Numerous methods have been developed to improve the prediction performance. However, most of the studies adopt single model for coal price forecasting, and their accuracy and applicability are usually restricted. In this paper, we propose a novel hybrid VMD-A-LSTM-SVR model to achieve accurate multi-step ahead prediction of coal price. The proposed model consists of three valuable strategies. First, variational mode decomposition (VMD) decomposes the original coal price into several relatively regular sub modes to reduce the non-stationarity and uncertainty of the data. Second, the long short-term memory (LSTM) integrated with attention mechanism trains and predicts the decomposed modes individually to better capture the temporal information of historical data. Lastly, a support vector regression (SVR) model ensembles the predicted results of each mode into the final forecasted coal price. The experimental results of three typical coal price datasets demonstrate that the proposed strategies are all valuable for improving the forecasting performance. Moreover, the proposed model outperforms all state-of-the-art baseline models in terms of both model accuracy and stability. Extensive cross-comparisons of performance between models clearly indicate that the proposed hybrid algorithm is more effective and practical for coal price forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
旺阿旺发布了新的文献求助10
1秒前
小二郎应助liuxinyu采纳,获得10
1秒前
2秒前
谦让雨柏发布了新的文献求助30
3秒前
4秒前
4秒前
小殷发布了新的文献求助10
5秒前
5秒前
6秒前
派大星发布了新的文献求助10
6秒前
7秒前
傻什么白完成签到,获得积分10
8秒前
田様应助小殷采纳,获得10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
YXM1发布了新的文献求助10
10秒前
10秒前
kai发布了新的文献求助10
10秒前
11秒前
善良访烟发布了新的文献求助30
11秒前
11秒前
橙子发布了新的文献求助10
12秒前
清爽的元灵完成签到,获得积分10
13秒前
13秒前
遇见发布了新的文献求助10
13秒前
研友_enP05n发布了新的文献求助10
14秒前
隐形曼青应助忧心的康采纳,获得30
15秒前
善学以致用应助木木木采纳,获得10
18秒前
feedyoursoul发布了新的文献求助10
18秒前
遇见完成签到,获得积分10
19秒前
科研通AI2S应助chen采纳,获得10
19秒前
叶子完成签到,获得积分10
19秒前
橙子完成签到,获得积分10
19秒前
香蕉觅云应助傻什么白采纳,获得30
20秒前
Small_L完成签到 ,获得积分10
21秒前
Hans完成签到,获得积分10
22秒前
23秒前
kai完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950591
求助须知:如何正确求助?哪些是违规求助? 4213415
关于积分的说明 13103805
捐赠科研通 3995216
什么是DOI,文献DOI怎么找? 2186825
邀请新用户注册赠送积分活动 1202071
关于科研通互助平台的介绍 1115355