Liver tumor segmentation using a new asymmetrical dilated convolutional semantic segmentation network in CT images

计算机科学 分割 人工智能 编码器 模式识别(心理学) 图像分割 卷积神经网络 卷积(计算机科学) 膨胀(度量空间) 人工神经网络 数学 组合数学 操作系统
作者
A. Anisha,T. Ajith Bosco Raj
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:32 (3): 815-830 被引量:5
标识
DOI:10.1002/ima.22663
摘要

Abstract Liver cancer has become one of the commonly occurring cancers in men and women. The segmented computed tomography (CT) image of the tumor is the major source for a doctor to diagnose liver diseases. This article proposes a fully automatic system based on an asymmetric dilated convolutional encoder–decoder neural (ADCEDN) network for the problem of accurately extracting the liver and tumor from abdominal CT slices. Specifically, two ADCEDN networks are used in a cascaded form to perform both liver and liver abnormality segmentation. We enrich the encoder module by incorporating the multiscale contextual information through dilated convolutions that enhance the capacity and efficiency of the network. Hybrid dilated convolution across depths perform depth‐wise separable convolution by providing a less steep increase in dilation rate and thus denser sampling that can reduce the computation cost and several metrics while maintaining better performance. Also, the encoder–decoder network is made asymmetric, thereby making the network less complex and more generalizable. The suggested method produced an average dice similarity coefficient score of 96.54% and 76.16% for liver segmentation and liver abnormality segmentation on the 3D Image Reconstruction for Comparison of Algorithm Database data set and 96.42% and 75.7% on the Liver Tumor Segmentation data set. The test outcomes show that the proposed ADCEDN attains state‐of‐the‐art performance in both segmentation of liver and tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MiaoRui完成签到,获得积分10
1秒前
2秒前
4秒前
5秒前
huang发布了新的文献求助30
8秒前
快乐小白菜完成签到 ,获得积分10
10秒前
17秒前
18秒前
今后应助泡沫之夏采纳,获得10
22秒前
Hanoi347发布了新的文献求助10
22秒前
喵喵完成签到 ,获得积分10
22秒前
24秒前
25秒前
27秒前
CA发布了新的文献求助10
27秒前
哆来咪发布了新的文献求助20
27秒前
无花果应助syy080837采纳,获得10
28秒前
28秒前
草中有粑粑完成签到,获得积分10
28秒前
白子双发布了新的文献求助10
28秒前
31秒前
32秒前
33秒前
coffee发布了新的文献求助10
33秒前
35秒前
诸葛语琴完成签到,获得积分10
36秒前
12121发布了新的文献求助10
38秒前
Kenny发布了新的文献求助10
39秒前
syy080837发布了新的文献求助10
41秒前
星辰大海应助埃森采纳,获得10
45秒前
Kenny完成签到,获得积分10
47秒前
学术混子雷雷雷雷雷完成签到,获得积分10
50秒前
huang完成签到,获得积分10
51秒前
55秒前
往事不可挽回完成签到 ,获得积分10
57秒前
王英俊完成签到,获得积分10
59秒前
小马甲应助GongSyi采纳,获得10
1分钟前
梧桐发布了新的文献求助10
1分钟前
土豆丝关注了科研通微信公众号
1分钟前
syy080837完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560249
求助须知:如何正确求助?哪些是违规求助? 4645431
关于积分的说明 14675179
捐赠科研通 4586582
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490105
关于科研通互助平台的介绍 1460915