Liver tumor segmentation using a new asymmetrical dilated convolutional semantic segmentation network in CT images

计算机科学 分割 人工智能 编码器 模式识别(心理学) 图像分割 卷积神经网络 卷积(计算机科学) 膨胀(度量空间) 人工神经网络 数学 操作系统 组合数学
作者
A. Anisha,T. Ajith Bosco Raj
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:32 (3): 815-830 被引量:5
标识
DOI:10.1002/ima.22663
摘要

Abstract Liver cancer has become one of the commonly occurring cancers in men and women. The segmented computed tomography (CT) image of the tumor is the major source for a doctor to diagnose liver diseases. This article proposes a fully automatic system based on an asymmetric dilated convolutional encoder–decoder neural (ADCEDN) network for the problem of accurately extracting the liver and tumor from abdominal CT slices. Specifically, two ADCEDN networks are used in a cascaded form to perform both liver and liver abnormality segmentation. We enrich the encoder module by incorporating the multiscale contextual information through dilated convolutions that enhance the capacity and efficiency of the network. Hybrid dilated convolution across depths perform depth‐wise separable convolution by providing a less steep increase in dilation rate and thus denser sampling that can reduce the computation cost and several metrics while maintaining better performance. Also, the encoder–decoder network is made asymmetric, thereby making the network less complex and more generalizable. The suggested method produced an average dice similarity coefficient score of 96.54% and 76.16% for liver segmentation and liver abnormality segmentation on the 3D Image Reconstruction for Comparison of Algorithm Database data set and 96.42% and 75.7% on the Liver Tumor Segmentation data set. The test outcomes show that the proposed ADCEDN attains state‐of‐the‐art performance in both segmentation of liver and tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李梦琦发布了新的文献求助30
刚刚
刚刚
花生发布了新的文献求助10
刚刚
乐观的鸽子完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
8R60d8完成签到,获得积分0
2秒前
2秒前
YF是杨芳完成签到 ,获得积分10
2秒前
玩二三天完成签到,获得积分10
3秒前
打打应助陈住气采纳,获得10
3秒前
阿会完成签到,获得积分10
3秒前
wdy111应助奋斗的珍采纳,获得20
4秒前
惠嘟嘟完成签到,获得积分10
5秒前
勤劳翰发布了新的文献求助10
5秒前
5秒前
李健应助完美的橘子采纳,获得30
5秒前
6秒前
依依完成签到 ,获得积分10
6秒前
6秒前
友好惜儿完成签到 ,获得积分10
6秒前
黑化小狗发布了新的文献求助20
6秒前
qiqi完成签到 ,获得积分10
7秒前
azw完成签到,获得积分10
8秒前
万能图书馆应助自然1111采纳,获得10
8秒前
沉默的婴发布了新的文献求助10
9秒前
nz完成签到,获得积分10
9秒前
yuanhao发布了新的文献求助10
10秒前
10秒前
10秒前
zl完成签到 ,获得积分10
11秒前
Wind发布了新的文献求助10
12秒前
12秒前
完美世界应助只如初采纳,获得10
13秒前
13秒前
supersunshine完成签到,获得积分10
13秒前
wys完成签到 ,获得积分10
13秒前
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650