催化作用
电极
可逆氢电极
材料科学
扩散
化学工程
纳米孔
大规模运输
纳米技术
金属有机骨架
基础(拓扑)
氧气
碳纤维
GSM演进的增强数据速率
多孔性
析氧
化学
计算机科学
工作电极
工程物理
电化学
物理化学
物理
复合材料
热力学
有机化学
吸附
数学分析
工程类
复合数
数学
电信
作者
Бо Лю,Zhichao Gong,Christopher S. Allen,Wen Ge,Haisheng Gong,Jiangwen Liao,Jianbin Liu,Kang Huang,Minmin Yan,Rui Liu,Guanchao He,Juncai Dong,Gonglan Ye,Huilong Fei
出处
期刊:Chem catalysis
[Elsevier]
日期:2021-10-15
卷期号:1 (6): 1291-1307
被引量:109
标识
DOI:10.1016/j.checat.2021.09.012
摘要
Metal- and nitrogen-coordinated nanocarbons (M-N/Cs) represent the most promising nonprecious catalysts for the oxygen reduction reaction (ORR), but it remains challenging to simultaneously achieve high intrinsic activity, fast mass transport, and efficient utilization of active sites in a single catalyst. Herein, we design an Fe-N/C catalyst consisting of edge-hosted Fe-N3 sites dispersed on multiscale porous carbon frameworks (eFe-N3/PCF). The low coordination and edge effect of the Fe-N3 moieties endow eFe-N3/PCF with high intrinsic activity, while the enriched nanopores enable improved mass transport and atom utilization efficiency. When evaluated by a rotating disk electrode in the base, eFe-N3/PCF presents early-onset and half-wave potentials of 1.090 and 0.934 V versus the reversible hydrogen electrode, respectively. Furthermore, when employed as gas diffusion electrodes, eFe-N3/PCF displays excellent mass-transport efficiency that enables high-rate/power capabilities at practically high current densities. This work opens up opportunities for designing high-performance ORR electrocatalysts toward applications in diverse energy conversion and storage technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI