Electrohydrodynamic disintegration of dielectric fluid blended with ethanol

电流体力学 分手 喷射(流体) 电介质 液体电介质 喷嘴 冷却液 雷诺数 机械 电喷雾 物理 电压 韦伯数 高压 材料科学 电场 热力学 光电子学 离子 量子力学 湍流
作者
Haojie Xu,Junfeng Wang,Jiameng Tian,Bin Li,Yao-Hui Jiang,Lei Zuo,Yan Zhang,Tianyue Zhao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:33 (6) 被引量:25
标识
DOI:10.1063/5.0052196
摘要

Engineered fluid HFE-7100 is an outstanding detergent and coolant with excellent thermal and chemical stability. Electrohydrodynamic jet disintegration and subsequent droplet formation of HFE-7100 dielectric liquid mixed with ethanol were experimentally investigated in this study. Contact-type charging was employed with the capillary nozzle directly connected to a negative high-voltage power supply, while the counter electrode was grounded. High-speed photography was utilized to capture the liquid breakup and droplet formation behaviors. The results showed that an ethanol content of 8% by volume visibly improved the charging performance of HFE-7100 due to the increase in the liquid electrical conductivity. In addition, with the increase in the applied voltage, the jet breakup was found to transform from the dripping/jetting mode to the ramified mode, which is characterized by a steady liquid sheet with fine droplets forming at the edge. Two distinct ramified breakup configurations, called the pudgy-ramified and lanky-ramified modes, are proposed, and their detailed structural parameters and droplet size distributions are discussed. The diameters of the droplets produced under the permanent ramified configuration could be as small as a few micrometers. Finally, a jet breakup regime map based on the Reynolds number Re and electric bond number BoE was established. Overall, the electrospray technique has shown promise for spray cooling enhancement, and the main results of this paper may be useful for the development of electrospray cooling with a dielectric coolant.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心碎的黄焖鸡完成签到 ,获得积分10
1秒前
2秒前
3秒前
4秒前
量子星尘发布了新的文献求助30
6秒前
7秒前
lingzhi完成签到 ,获得积分10
7秒前
酷波er应助风中小蕊采纳,获得10
10秒前
10秒前
gaga发布了新的文献求助30
10秒前
麻烦完成签到,获得积分10
11秒前
ccc完成签到,获得积分10
12秒前
对称破缺发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
吃猫的鱼完成签到 ,获得积分10
15秒前
科目三应助宇文宛菡采纳,获得10
17秒前
17秒前
斑其发布了新的文献求助10
17秒前
K99完成签到,获得积分20
18秒前
18秒前
19秒前
DC-CIK军团完成签到 ,获得积分10
19秒前
19秒前
娜娜发布了新的文献求助10
20秒前
鹤鹤有名完成签到,获得积分20
20秒前
默默惋清发布了新的文献求助10
21秒前
97_完成签到,获得积分10
22秒前
Akim应助研友_ZzrNpZ采纳,获得10
22秒前
22秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
小苏打完成签到,获得积分10
25秒前
咸鸭蛋完成签到 ,获得积分10
25秒前
小xy完成签到,获得积分10
26秒前
Cpp完成签到 ,获得积分10
27秒前
28秒前
ming发布了新的文献求助10
28秒前
30秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742394
求助须知:如何正确求助?哪些是违规求助? 5408115
关于积分的说明 15344853
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625257
邀请新用户注册赠送积分活动 1574095
关于科研通互助平台的介绍 1531070