Electrohydrodynamic disintegration of dielectric fluid blended with ethanol

电流体力学 分手 喷射(流体) 电介质 液体电介质 喷嘴 冷却液 雷诺数 机械 电喷雾 物理 电压 韦伯数 高压 材料科学 电场 热力学 光电子学 离子 量子力学 湍流
作者
Haojie Xu,Junfeng Wang,Jiameng Tian,Bin Li,Yao-Hui Jiang,Lei Zuo,Yan Zhang,Tianyue Zhao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:33 (6) 被引量:25
标识
DOI:10.1063/5.0052196
摘要

Engineered fluid HFE-7100 is an outstanding detergent and coolant with excellent thermal and chemical stability. Electrohydrodynamic jet disintegration and subsequent droplet formation of HFE-7100 dielectric liquid mixed with ethanol were experimentally investigated in this study. Contact-type charging was employed with the capillary nozzle directly connected to a negative high-voltage power supply, while the counter electrode was grounded. High-speed photography was utilized to capture the liquid breakup and droplet formation behaviors. The results showed that an ethanol content of 8% by volume visibly improved the charging performance of HFE-7100 due to the increase in the liquid electrical conductivity. In addition, with the increase in the applied voltage, the jet breakup was found to transform from the dripping/jetting mode to the ramified mode, which is characterized by a steady liquid sheet with fine droplets forming at the edge. Two distinct ramified breakup configurations, called the pudgy-ramified and lanky-ramified modes, are proposed, and their detailed structural parameters and droplet size distributions are discussed. The diameters of the droplets produced under the permanent ramified configuration could be as small as a few micrometers. Finally, a jet breakup regime map based on the Reynolds number Re and electric bond number BoE was established. Overall, the electrospray technique has shown promise for spray cooling enhancement, and the main results of this paper may be useful for the development of electrospray cooling with a dielectric coolant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
surilige完成签到 ,获得积分10
1秒前
lijiayi完成签到,获得积分10
3秒前
3秒前
4秒前
Raven完成签到,获得积分10
4秒前
4秒前
4秒前
清风明月完成签到 ,获得积分10
5秒前
5秒前
6秒前
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
欣慰煎蛋应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得20
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
所爱皆在完成签到 ,获得积分10
9秒前
杨酸关注了科研通微信公众号
10秒前
张蕊发布了新的文献求助10
12秒前
12秒前
萝卜鱼芋发布了新的文献求助10
14秒前
平淡鞋子关注了科研通微信公众号
14秒前
SciGPT应助玖玖采纳,获得10
15秒前
16秒前
19秒前
medai完成签到 ,获得积分10
21秒前
平淡鞋子发布了新的文献求助10
21秒前
周淑娜发布了新的文献求助10
21秒前
stephenzh发布了新的文献求助10
22秒前
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287984
求助须知:如何正确求助?哪些是违规求助? 4440026
关于积分的说明 13823687
捐赠科研通 4322271
什么是DOI,文献DOI怎么找? 2372462
邀请新用户注册赠送积分活动 1367928
关于科研通互助平台的介绍 1331548