A hybrid machine learning method for procurement risk assessment of non-ferrous metals for manufacturing firms

采购 可靠性(半导体) 计算机科学 过程(计算) 多样性(控制论) 灵敏度(控制系统) 机器学习 财务风险 风险分析(工程) 工业工程 人工智能 可靠性工程 工程类 业务 财务 操作系统 量子力学 物理 电子工程 营销 功率(物理)
作者
Jian Ni,Yan Hu,Ray Y. Zhong
出处
期刊:International Journal of Computer Integrated Manufacturing [Taylor & Francis]
卷期号:35 (10-11): 1028-1042 被引量:5
标识
DOI:10.1080/0951192x.2021.1901315
摘要

With the growing complexity of manufacturing systems nowadays, the effective assessment of important risk factors inherent in the manufacturing process is crucial for the stability and reliability of such complex systems. Thus, this article proposes a data-driven approach using the state-of-art machine learning techniques to assess and forecast the procurement risks of non-ferrous metals associated with complex manufacturing systems. A variety of state-of-art machine learning models including ANN, LSTM, BLSTM, GARCH, as well as their combinations which compose the proposed hybrid models, are deployed and analyzed. The testing results show that the proposed hybrid machine learning method can forecast the price uncertainty in procurement and effectively evaluate the procurement risk in a precautious manner. Moreover, it is shown that the hybrid model that combines GARCH, ANN, and LSTM significantly improves the forecasting results. Besides, the optimal choice of the network configurations in the hybrid model is also analyzed via a series of sensitivity analyses. This research can serve as a useful reference for the effective assessment and control of procurement risk for manufacturing firms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pterion完成签到,获得积分10
刚刚
刚刚
蓝桉发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
迷人的天抒应助frl采纳,获得10
2秒前
Jean完成签到,获得积分20
2秒前
2秒前
今后应助自觉的凛采纳,获得10
2秒前
SciGPT应助兀那狗子别跑采纳,获得10
2秒前
大模型应助kuaikuai采纳,获得10
3秒前
Diffileft发布了新的文献求助10
3秒前
天天快乐应助dora332211采纳,获得30
3秒前
miraitowa发布了新的文献求助10
3秒前
玉洁发布了新的文献求助10
3秒前
4秒前
Wendyya完成签到,获得积分10
4秒前
djiwisksk66应助自信问枫采纳,获得10
4秒前
MR_Z发布了新的文献求助20
5秒前
6秒前
Brokky发布了新的文献求助10
6秒前
6秒前
jing666发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
252525完成签到,获得积分20
7秒前
7秒前
Tomsen发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
yilongyy完成签到,获得积分10
9秒前
9秒前
zzzzzzzp应助yuyu采纳,获得10
10秒前
倒吸一口凉气完成签到,获得积分10
10秒前
SYLH应助00采纳,获得10
10秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970724
求助须知:如何正确求助?哪些是违规求助? 3515419
关于积分的说明 11178342
捐赠科研通 3250592
什么是DOI,文献DOI怎么找? 1795372
邀请新用户注册赠送积分活动 875802
科研通“疑难数据库(出版商)”最低求助积分说明 805181