Revisiting the Storage Capacity Limit of Graphite Battery Anodes: Spontaneous Lithium Overintercalation at Ambient Pressure

阳极 石墨 热解炭 材料科学 电池(电) 插层(化学) 环境压力 锂(药物) 储能 高定向热解石墨 化学物理 纳米技术 化学 电极 热力学 无机化学 复合材料 物理 有机化学 功率(物理) 物理化学 内分泌学 医学 热解
作者
Cristina Grosu,Chiara Panosetti,Steffen Merz,Peter Jakes,Stefan Seidlmayer,Sebastian Matera,Rüdiger‐A. Eichel,Josef Granwehr,Christoph Scheurer
标识
DOI:10.1103/prxenergy.2.013003
摘要

The market quest for fast-charging, safe, long-lasting, and performant batteries drives the exploration of new energy storage materials, but also promotes fundamental investigations of materials already widely used. Presently, renewed interest in anode materials is observed—primarily graphite electrodes for lithium-ion batteries. Here, we focus on the upper limit of lithium intercalation in the morphologically quasi-ideal highly oriented pyrolytic graphite, with a LiC6 stoichiometry corresponding to nominally 100% state of charge. We prepare a sample by immersion in liquid lithium at ambient pressure and investigate it by static 7Li nuclear magnetic resonance (NMR). We resolve unexpected signatures of superdense intercalation compounds, LiC6−x. These have been ruled out for decades, since the highest geometrically accessible composition, LiC2, can only be prepared under high pressure. We thus challenge the widespread notion that any additional intercalation beyond LiC6 is insignificant under ambient conditions. We monitor the sample upon calendaric ageing and employ ab initio calculations to rationalize the NMR results. Computed relative stabilities of different superdense configurations reveal that non-negligible overintercalation does proceed spontaneously beyond the currently accepted capacity limit. The associated capacity gain is not worth pushing graphitic battery anodes beyond the LiC6 limit in practical applications; rather these findings carry more fundamental implications. Neglecting overintercalation may hinder the correct interpretation of experimental observations, as well as the correct design of computational models, in investigations of performance-critical phenomena, as it is likely to play a crucial role in the onset mechanism of lithium plating and dendrite formation in real battery materials.Received 15 November 2021Revised 13 January 2023Accepted 20 January 2023DOI:https://doi.org/10.1103/PRXEnergy.2.013003Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Physical SystemsBatteriesGraphiteTechniquesDensity functional theoryNuclear magnetic resonanceCondensed Matter, Materials & Applied Physics
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
章鱼发布了新的文献求助10
刚刚
chenhouhan发布了新的文献求助10
刚刚
牛曙东完成签到,获得积分10
1秒前
里里应助刘研采纳,获得10
1秒前
1秒前
所所应助付艳采纳,获得10
2秒前
2秒前
Lucas应助第七个星球采纳,获得10
2秒前
mooncake发布了新的文献求助10
2秒前
zx发布了新的文献求助10
3秒前
123完成签到,获得积分10
3秒前
Ludi完成签到,获得积分10
3秒前
伏波完成签到,获得积分0
3秒前
Hello应助KeYang采纳,获得10
4秒前
小马发布了新的文献求助30
4秒前
西出阳关完成签到,获得积分10
4秒前
jinlin完成签到,获得积分10
4秒前
5秒前
丘比特应助爱听歌采纳,获得10
5秒前
6秒前
horizon完成签到,获得积分20
6秒前
7秒前
7秒前
诚心冬亦完成签到,获得积分10
7秒前
天明完成签到,获得积分10
7秒前
稳重的太兰完成签到 ,获得积分10
7秒前
8秒前
8秒前
griffon完成签到,获得积分10
8秒前
木木完成签到,获得积分10
9秒前
cyndi发布了新的文献求助10
9秒前
9秒前
zx完成签到,获得积分10
10秒前
第七个星球完成签到,获得积分10
10秒前
搜集达人应助xh采纳,获得10
10秒前
11秒前
求助人员应助pax采纳,获得10
11秒前
青菜发布了新的文献求助10
11秒前
11秒前
Thi发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271