Revisiting the Storage Capacity Limit of Graphite Battery Anodes: Spontaneous Lithium Overintercalation at Ambient Pressure

阳极 石墨 热解炭 材料科学 电池(电) 插层(化学) 环境压力 锂(药物) 储能 高定向热解石墨 化学物理 纳米技术 化学 电极 热力学 无机化学 复合材料 物理 有机化学 功率(物理) 物理化学 内分泌学 医学 热解
作者
Cristina Grosu,Chiara Panosetti,Steffen Merz,Peter Jakes,Stefan Seidlmayer,Sebastian Matera,Rüdiger‐A. Eichel,Josef Granwehr,Christoph Scheurer
标识
DOI:10.1103/prxenergy.2.013003
摘要

The market quest for fast-charging, safe, long-lasting, and performant batteries drives the exploration of new energy storage materials, but also promotes fundamental investigations of materials already widely used. Presently, renewed interest in anode materials is observed—primarily graphite electrodes for lithium-ion batteries. Here, we focus on the upper limit of lithium intercalation in the morphologically quasi-ideal highly oriented pyrolytic graphite, with a LiC6 stoichiometry corresponding to nominally 100% state of charge. We prepare a sample by immersion in liquid lithium at ambient pressure and investigate it by static 7Li nuclear magnetic resonance (NMR). We resolve unexpected signatures of superdense intercalation compounds, LiC6−x. These have been ruled out for decades, since the highest geometrically accessible composition, LiC2, can only be prepared under high pressure. We thus challenge the widespread notion that any additional intercalation beyond LiC6 is insignificant under ambient conditions. We monitor the sample upon calendaric ageing and employ ab initio calculations to rationalize the NMR results. Computed relative stabilities of different superdense configurations reveal that non-negligible overintercalation does proceed spontaneously beyond the currently accepted capacity limit. The associated capacity gain is not worth pushing graphitic battery anodes beyond the LiC6 limit in practical applications; rather these findings carry more fundamental implications. Neglecting overintercalation may hinder the correct interpretation of experimental observations, as well as the correct design of computational models, in investigations of performance-critical phenomena, as it is likely to play a crucial role in the onset mechanism of lithium plating and dendrite formation in real battery materials.Received 15 November 2021Revised 13 January 2023Accepted 20 January 2023DOI:https://doi.org/10.1103/PRXEnergy.2.013003Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Physical SystemsBatteriesGraphiteTechniquesDensity functional theoryNuclear magnetic resonanceCondensed Matter, Materials & Applied Physics
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助yeandpeng采纳,获得10
1秒前
姜玲完成签到,获得积分10
1秒前
叶雪怡完成签到 ,获得积分10
2秒前
3秒前
11完成签到,获得积分10
4秒前
小珂完成签到,获得积分10
4秒前
6秒前
6秒前
6秒前
粱夏烟完成签到,获得积分10
7秒前
ScholarZmm完成签到,获得积分10
8秒前
星辰大海应助阳光采纳,获得10
8秒前
10秒前
lili发布了新的文献求助10
10秒前
Zero完成签到,获得积分10
11秒前
得失心的诅咒完成签到 ,获得积分10
11秒前
上官若男应助安南采纳,获得10
11秒前
12秒前
刻苦的菀发布了新的文献求助10
12秒前
斜阳西下柳缠锦完成签到,获得积分10
14秒前
Irene发布了新的文献求助10
14秒前
Qianyun完成签到,获得积分10
14秒前
e麓绝尘完成签到 ,获得积分10
15秒前
bigpluto发布了新的文献求助10
15秒前
ok完成签到,获得积分10
16秒前
吴军霄完成签到,获得积分10
16秒前
dddyrrrrr完成签到 ,获得积分10
17秒前
AN关闭了AN文献求助
17秒前
18秒前
18秒前
852应助孔孔采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
田様应助Yummy采纳,获得10
24秒前
不安的凡桃完成签到,获得积分10
24秒前
25秒前
共享精神应助李燊采纳,获得10
26秒前
26秒前
xu发布了新的文献求助30
26秒前
27秒前
满意的蜗牛完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484152
求助须知:如何正确求助?哪些是违规求助? 4584446
关于积分的说明 14397956
捐赠科研通 4514459
什么是DOI,文献DOI怎么找? 2474010
邀请新用户注册赠送积分活动 1459963
关于科研通互助平台的介绍 1433365