Automatic Classification of Wheat Rust Diseases Using Deep Convolutional Neural Networks

作者
Vinay Kukreja,Deepak Kumar
出处
期刊:International Conference on Computer Communications
标识
DOI:10.1109/icrito51393.2021.9596133
摘要

Wheat is the staple food for Indians and it is one of the most common grain crops all over the world. The wheat diseases cause a huge amount of yield losses. The wheat yield losses are due to fungi, bacterial and insect-based diseases. Due to fungal diseases, yield loss has a great effect on wheat grain. Based on the type of fungus, the fungal diseases are categorized into four types namely as rust, leaf spot, spike infection, and virus-based diseases. Hence, these rust diseases affect the whole wheat plant and lead to very heavy yield quality loss. To overcome these quality yield issues, a deep learning-based approach known as a deep convolutional neural network (DCNN) is proposed which can easily classify the wheat rust diseases automatically without human investigation. Additionally, this DCNN training and testing process produces wheat rust diseases determination and high classification results. A total of 1486 wheat plant images have been accessed through the CGIAR dataset and 514 wheat stem rust images have been collected from secondary sources. A total of 2000 wheat plant images have been used for training and testing purposes in DCNN. During training, a stochastic gradient descent method achieves high classification results. Therefore, our proposed approach achieves high classification accuracy of 97.16% for wheat rust diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张欣宇发布了新的文献求助10
刚刚
1秒前
1秒前
佛系完成签到 ,获得积分10
1秒前
贝贝完成签到,获得积分10
1秒前
啧啧zeze完成签到,获得积分10
1秒前
傅飞风发布了新的文献求助10
1秒前
脚啊啊啊完成签到,获得积分10
2秒前
2秒前
zyz发布了新的文献求助10
3秒前
tengy完成签到,获得积分10
3秒前
3秒前
3秒前
yishu95完成签到,获得积分10
3秒前
4秒前
周舟发布了新的文献求助10
6秒前
背后访风发布了新的文献求助10
6秒前
7秒前
zhangjianing完成签到,获得积分10
7秒前
空巢小黄人完成签到,获得积分10
7秒前
8秒前
lixiansheng完成签到,获得积分10
8秒前
JohnsonTse完成签到,获得积分10
8秒前
李子发布了新的文献求助10
8秒前
慕青应助迷路荷花采纳,获得10
9秒前
sjr发布了新的文献求助10
9秒前
Kretschmann完成签到,获得积分0
9秒前
wo完成签到 ,获得积分10
10秒前
12秒前
在水一方应助无无采纳,获得10
13秒前
Jenny完成签到,获得积分20
14秒前
14秒前
14秒前
15秒前
努力的小狗屁应助Vincent采纳,获得10
17秒前
KK发布了新的文献求助10
18秒前
zyz完成签到,获得积分10
19秒前
Jenny发布了新的文献求助10
19秒前
19秒前
chao发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155506
求助须知:如何正确求助?哪些是违规求助? 2806610
关于积分的说明 7870084
捐赠科研通 2464969
什么是DOI,文献DOI怎么找? 1312053
科研通“疑难数据库(出版商)”最低求助积分说明 629847
版权声明 601892